


 

 

HDF5 User’s Guide

HDF5 Release 1.8.15

May 2015

 

 

[image: logo_bluegreen_txt.jpg]

 

 




Copyright Notice and License Terms

This page has copyright notice and license terms for the HDF5 (Hierarchical Data Format 5) Software Library and Utilities.

 

HDF5 (Hierarchical Data Format 5) Software Library and Utilities

Copyright 2006-2015 by The HDF Group.

 

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities

Copyright 1998-2006 by the Board of Trustees of the University of Illinois.

 

All rights reserved.

 

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including commercial purposes) provided that the following conditions are met:

•        Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.

•        Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or materials provided with the distribu­tion.

•        In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the original code was changed and the date of the change.

•        All publications or advertising materials mentioning features or use of this software are asked, but not required, to acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign and credit the contributors.

•        Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endorse or promote products derived from this software without specific prior written permission from The HDF Group, the University, or the Contributor, respectively.

 

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIBUTORS "AS IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall The HDF Group or the Contributors be liable for any damages suffered by the users arising out of the use of this software, even if advised of the possibility of such damage.

 

 

 

Contributors:   National Center for Supercomputing Applications  (NCSA) at the University of Illinois, Fort­ner Software, Unidata Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital Equipment Corporation (DEC).

 

Portions of HDF5 were developed with support from the Lawrence Berkeley National Laboratory (LBNL) and the United States Department of Energy under Prime Contract No. DE-AC02-05CH11231.

 

Portions of HDF5 were developed with support from the University of California, Lawrence Livermore National Laboratory (UC LLNL). The following statement applies to those portions of the product and must be retained in any redistribution of source code, binaries, documentation, and/or accompanying materi­als:

This work was partially produced at the University of California, Lawrence Livermore National Lab­oratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy (DOE) and The Regents of the University of California (University) for the operation of UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, prod­uct, or process disclosed, or represents that its use would not infringe privately- owned rights. Ref­erence herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom­mendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

 

HDF5 is available with the SZIP compression library but SZIP is not part of HDF5 and has separate copyright and license terms. See “Szip Compression in HDF Products” for further details.

The HDF Group Help Desk

The HDF Group Help Desk: help@hdfgroup.org

See the “Support Services” page on The HDF Group website for information on the following:

•        Frequently asked questions

•        Tutorials

•        How to subscribe to the hdf-forum

See the “HDF5 Examples” page on The HDF Group website at for a set of code examples.

 




Update Status

No major changes have been made to the HDF5 User’s Guide for HDF5 Release 1.8.15.

We welcome feedback on the documentation. Please send your comments to docs@hdfgroup.org.

 




1. The HDF5 Data Model and File Structure

The Hierarchical Data Format (HDF) implements a model for managing and storing data. The model includes an abstract data model and an abstract storage model (the data format), and libraries to imple­ment the abstract model and to map the storage model to different storage mechanisms. The HDF5 library provides a programming interface to a concrete implementation of the abstract models. The library also implements a model of data transfer, an efficient movement of data from one stored representation to another stored representation. The figure below illustrates the relationships between the models and implementations. This chapter explains these models in detail.



Figure 1-1. HDF5 models and implementations

	
[image: Dmodel_fig1.JPG]

 

 








 

The Abstract Data Model is a conceptual model of data, data types, and data organization. The abstract data model is independent of storage medium or programming environment. The Storage Model is a stan­dard representation for the objects of the abstract data model. The HDF5 File Format Specification defines the storage model.

The Programming Model is a model of the computing environment and includes platforms from small sin­gle systems to large multiprocessors and clusters. The programming model manipulates (instantiates, pop­ulates, and retrieves) objects from the abstract data model.

The Library is the concrete implementation of the programming model. The Library exports the HDF5 APIs as its interface. In addition to implementing the objects of the abstract data model, the Library manages data transfers from one stored form to another. Data transfer examples include reading from disk to mem­ory and writing from memory to disk.

Stored Data is the concrete implementation of the storage model. The storage model is mapped to several storage mechanisms including single disk files, multiple files (family of files), and memory representations.

The HDF5 Library is a C module that implements the programming model and abstract data model. The HDF5 Library calls the operating system or other storage management software (for example, the MPI/IO Library) to store and retrieve persistent data. The HDF5 Library may also link to other software such as fil­ters for compression. The HDF5 Library is linked to an application program which may be written in C, C++, Fortran, or Java. The application program implements problem specific algorithms and data structures and calls the HDF5 Library to store and retrieve data. The figure below shows the dependencies of these mod­ules.



Figure 1-2. The library, the application program, and other modules

	
[image: Dmodel_fig2.JPG]

 

 








 

It is important to realize that each of the software components manages data using models and data structures that are appropriate to the component. When data is passed between layers (during storage or retrieval), it is transformed from one representation to another. The figure below suggests some of the kinds of data structures used in the different layers.

The Application Program uses data structures that represent the problem and algorithms including vari­ables, tables, arrays, and meshes among other data structures. Depending on its design and function, an application may have quite a few different kinds of data structures and different numbers and sizes of objects.

The HDF5 Library implements the objects of the HDF5 abstract data model. Some of these objects include groups, datasets, and attributes. The application program maps the application data structures to a hier­archy of HDF5 objects. Each application will create a mapping best suited to its purposes.

The objects of the HDF5 abstract data model are mapped to the objects of the HDF5 storage model, and stored in a storage medium. The stored objects include header blocks, free lists, data blocks, B-trees, and other objects. Each group or dataset is stored as one or more header and data blocks. See the HDF5 File Format Specification for more information on how these objects are organized. The HDF5 Library can also use other libraries and modules such as compression.



Figure 1-3. Data structures in different layers

	
[image: Dmodel_fig3_a.JPG]

 

[image: Dmodel_fig200001.JPG]

 

[image: Dmodel_fig3_c.JPG]

 

 








 

The important point to note is that there is not necessarily any simple correspondence between the objects of the application program, the abstract data model, and those of the Format Specification. The organization of the data of application program, and how it is mapped to the HDF5 abstract data model is up to the application developer. The application program only needs to deal with the library and the abstract data model. Most applications need not consider any details of the HDF5 File Format Specifica­tion or the details of how objects of abstract data model are translated to and from storage.

1.1. The Abstract Data Model

The abstract data model (ADM) defines concepts for defining and describing complex data stored in files. The ADM is a very general model which is designed to conceptually cover many specific models. Many dif­ferent kinds of data can be mapped to objects of the ADM, and therefore stored and retrieved using HDF5. The ADM is not, however, a model of any particular problem or application domain. Users need to map their data to the concepts of the ADM.

The key concepts include:

•        File - a contiguous string of bytes in a computer store (memory, disk, etc.), and the bytes repre­sent zero or more objects of the model

•        Group - a collection of objects (including groups)

•        Dataset - a multidimensional array of data elements with attributes and other metadata

•        Dataspace - a description of the dimensions of a multidimensional array

•        Datatype - a description of a specific class of data element including its storage layout as a pattern of bits

•        Attribute - a named data value associated with a group, dataset, or named datatype

•        Property List - a collection of parameters (some permanent and some transient) controlling options in the library

•        Link - the way objects are connected

These key concepts are described in more detail below.

1.1.1. File

Abstractly, an HDF5 file is a container for an organized collection of objects. The objects are groups, data­sets, and other objects as defined below. The objects are organized as a rooted, directed graph. Every HDF5 file has at least one object, the root group. See the figure below. All objects are members of the root group or descendants of the root group.



Figure 1-4. The HDF5 file

	
[image: Dmodel_fig4_b.JPG]

[image: Dmodel_fig4_a.JPG]

 

 








 

HDF5 objects have a unique identity within a single HDF5 file and can be accessed only by its names within the hierarchy of the file. HDF5 objects in different files do not necessarily have unique identities, and it is not possible to access a permanent HDF5 object except through a file. For more information, see "The Structure of an HDF5 File."

When the file is created, the file creation properties specify settings for the file. The file creation proper­ties include version information and parameters of global data structures. When the file is opened, the file access properties specify settings for the current access to the file. File access properties include parame­ters for storage drivers and parameters for caching and garbage collection. The file creation properties are set permanently for the life of the file, and the file access properties can be changed by closing and reopening the file.

An HDF5 file can be “mounted” as part of another HDF5 file. This is analogous to Unix file system mounts. The root of the mounted file is attached to a group in the mounting file, and all the contents can be accessed as if the mounted file were part of the mounting file.   

1.1.2. Group

An HDF5 group is analogous to a file system directory. Abstractly, a group contains zero or more objects, and every object must be a member of at least one group. The root group is a special case; it may not be a member of any group.

Group membership is actually implemented via link objects. See the figure below. A link object is owned by a group and points to a named object. Each link has a name, and each link points to exactly one object. Each named object has at least one and possibly many links to it.



Figure 1-5. Group membership via link objects

	
[image: Dmodel_fig5.JPG]

 

 








 

There are three classes of named objects: group, dataset, and committed (named) datatype. See the fig­ure below. Each of these objects is the member of at least one group, and this means there is at least one link to it.



Figure 1-6. Classes of named objects

	
[image: Dmodel_fig6.JPG]

 

 








 

1.1.3. Dataset

An HDF5 dataset is a multidimensional (rectangular) array of data elements. See the figure below. The shape of the array (number of dimensions, size of each dimension) is described by the dataspace object (described in the next section below).

A data element is a single unit of data which may be a number, a character, an array of numbers or charac­ters, or a record of heterogeneous data elements. A data element is a set of bits. The layout of the bits is described by the datatype (see below).

The dataspace and datatype are set when the dataset is created, and they cannot be changed for the life of the dataset. The dataset creation properties are set when the dataset is created. The dataset creation properties include the fill value and storage properties such as chunking and compression. These proper­ties cannot be changed after the dataset is created.

The dataset object manages the storage and access to the data. While the data is conceptually a contigu­ous rectangular array, it is physically stored and transferred in different ways depending on the storage properties and the storage mechanism used. The actual storage may be a set of compressed chunks, and the access may be through different storage mechanisms and caches. The dataset maps between the con­ceptual array of elements and the actual stored data.



Figure 1-7. The dataset

	
[image: Dmodel_fig7_b.JPG]

 

 








 

1.1.4. Dataspace

The HDF5 dataspace describes the layout of the elements of a multidimensional array. Conceptually, the array is a hyper-rectangle with one to 32 dimensions. HDF5 dataspaces can be extendable. Therefore, each dimension has a current size and a maximum size, and the maximum may be unlimited. The dataspace describes this hyper-rectangle: it is a list of dimensions with the current and maximum (or unlimited) sizes. See the figure below.



Figure 1-8. The dataspace

	
 

[image: Dmodel_fig8.JPG]

 








 

Dataspace objects are also used to describe hyperslab selections from a dataset. Any subset of the ele­ments of a dataset can be selected for read or write by specifying a set of hyperslabs. A non-rectangular region can be selected by the union of several (rectangular) dataspaces.

1.1.5. Datatype

The HDF5 datatype object describes the layout of a single data element. A data element is a single ele­ment of the array; it may be a single number, a character, an array of numbers or carriers, or other data. The datatype object describes the storage layout of this data.

Data types are categorized into 11 classes of datatype. Each class is interpreted according to a set of rules and has a specific set of properties to describe its storage. For instance, floating point numbers have expo­nent position and sizes which are interpreted according to appropriate standards for number representa­tion. Thus, the datatype class tells what the element means, and the datatype describes how it is stored.

The figure below shows the classification of datatypes. Atomic datatypes are indivisible. Each may be a single object such as a number or a string. Composite datatypes are composed of multiple elements of atomic datatypes. In addition to the standard types, users can define additional datatypes such as a 24-bit integer or a 16-bit float.

A dataset or attribute has a single datatype object associated with it. See Figure 7 above. The datatype object may be used in the definition of several objects, but by default, a copy of the datatype object will be private to the dataset.

Optionally, a datatype object can be stored in the HDF5 file. The datatype is linked into a group, and there­fore given a name. A committed datatype (formerly called a named datatype) can be opened and used in any way that a datatype object can be used.

For more information, see "HDF5 Datatypes."



Figure 1-9. Datatype classifications

	
[image: Dmodel_fig9.JPG]

 

 








 

1.1.6. Attribute

Any HDF5 named data object (group, dataset, or named datatype) may have zero or more user defined attributes. Attributes are used to document the object. The attributes of an object are stored with the object.

An HDF5 attribute has a name and data. The data portion is similar in structure to a dataset: a dataspace defines the layout of an array of data elements, and a datatype defines the storage layout and interpreta­tion of the elements See the figure below.



Figure 1-10. Attribute data elements

	
[image: Dmodel_fig10.JPG]

 

 








 

In fact, an attribute is very similar to a dataset with the following limitations:

•        An attribute can only be accessed via the object

•        Attribute names are significant only within the object

•        An attribute should be a small object

•        The data of an attribute must be read or written in a single access (partial reading or writing is not allowed)

•        Attributes do not have attributes

Note that the value of an attribute can be an object reference. A shared attribute or an attribute that is a large array can be implemented as a reference to a dataset.

The name, dataspace, and datatype of an attribute are specified when it is created and cannot be changed over the life of the attribute. An attribute can be opened by name, by index, or by iterating through all the attributes of the object.

1.1.7. Property List

HDF5 has a generic property list object. Each list is a collection of name-value pairs. Each class of property list has a specific set of properties. Each property has an implicit name, a datatype, and a value. See the figure below. A property list object is created and used in ways similar to the other objects of the HDF5 library.

Property Lists are attached to the object in the library, they can be used by any part of the library. Some properties are permanent (for example, the chunking strategy for a dataset), others are transient (for example, buffer sizes for data transfer). A common use of a Property List is to pass parameters from the calling program to a VFL driver or a module of the pipeline.

Property lists are conceptually similar to attributes. Property lists are information relevant to the behavior of the library while attributes are relevant to the user’s data and application.



Figure 1-11. The property list

	
[image: Dmodel_fig11_b.jpg]

 

 








 

Property lists are used to control optional behavior for file creation, file access, dataset creation, dataset transfer (read, write), and file mounting. Some property list classes are shown in the table below. Details of the different property lists are explained in the relevant sections of this document.



Table 1-1. Property list classes and their usage

 	
Property List Class


 	
Used


 	
Examples





	
H5P_FILE_CREATE


	
Properties for file creation.


	
Set size of user block.    





	
H5P_FILE_ACCESS


	
Properties for file access.


	
Set parameters for VFL driver. An example is MPI I/O.    





	
H5P_DATASET_CREATE


	
Properties for dataset cre­ation.


	
Set chunking, compression, or fill value.    





	
H5P_DATASET_XFER


	
Properties for raw data trans­fer (read and write).


	
Tune buffer sizes or memory management.    





	
H5P_FILE_MOUNT


	
Properties for file mounting.


	
 








 

1.1.8. Link

This section is under construction.

1.2. The HDF5 Storage Model

1.2.1. The Abstract Storage Model: the HDF5 Format Specification

The HDF5 File Format Specification defines how HDF5 objects and data are mapped to a linear address space. The address space is assumed to be a contiguous array of bytes stored on some random access medium.1 The format defines the standard for how the objects of the abstract data model are mapped to linear addresses. The stored representation is self-describing in the sense that the format defines all the information necessary to read and reconstruct the original objects of the abstract data model.

The HDF5 File Format Specification is organized in three parts:

1.      Level 0: File signature and super block

2.      Level 1: File infrastructure

a.      Level 1A: B-link trees and B-tree nodes

b.      Level 1B: Group

c.       Level 1C: Group entry

d.      Level 1D: Local heaps

e.      Level 1E: Global heap

f.        Level 1F: Free-space index

3.      Level 2: Data object

a.      Level 2A: Data object headers

b.      Level 2B: Shared data object headers

c.       Level 2C: Data object data storage

The Level 0 specification defines the header block for the file. Header block elements include a signature, version information, key parameters of the file layout (such as which VFL file drivers are needed), and pointers to the rest of the file. Level 1 defines the data structures used throughout the file: the B-trees, heaps, and groups. Level 2 defines the data structure for storing the data objects and data. In all cases, the data structures are completely specified so that every bit in the file can be faithfully interpreted.

It is important to realize that the structures defined in the HDF5 file format are not the same as the abstract data model: the object headers, heaps, and B-trees of the file specification are not represented in the abstract data model. The format defines a number of objects for managing the storage including header blocks, B-trees, and heaps. The HDF5 File Format Specification defines how the abstract objects (for example, groups and datasets) are represented as headers, B-tree blocks, and other elements.

The HDF5 Library implements operations to write HDF5 objects to the linear format and to read from the linear format to create HDF5 objects. It is important to realize that a single HDF5 abstract object is usually stored as several objects. A dataset, for example, might be stored in a header and in one or more data blocks, and these objects might not be contiguous on the hard disk.

1.2.2. Concrete Storage Model

The HDF5 file format defines an abstract linear address space. This can be implemented in different stor­age media such as a single file or multiple files on disk or in memory. The HDF5 Library defines an open interface called the Virtual File Layer (VFL). The VFL allows different concrete storage models to be selected.

The VFL defines an abstract model, an API for random access storage, and an API to plug in alternative VFL driver modules. The model defines the operations that the VFL driver must and may support, and the plug-in API enables the HDF5 Library to recognize the driver and pass it control and data.

A number of VFL drivers have been defined in the HDF5 Library. Some work with a single file, and some work with multiple files split in various ways. Some work in serial computing environments, and some work in parallel computing environments. Most work with disk copies of HDF5 files, but one works with a memory copy. These drivers are listed in the “Supported file drivers” table. For more information, see "Alternate File Storage Layouts and Low-level File Drivers."

Each driver isolates the details of reading and writing storage so that the rest of the HDF5 Library and user program can be almost the same for different storage methods. The exception to this rule is that some VFL drivers need information from the calling application. This information is passed using property lists. For example, the Parallel driver requires certain control information that must be provided by the application.

1.3. The Structure of an HDF5 File

1.3.1. Overall File Structure

An HDF5 file is organized as a rooted, directed graph. Named data objects are the nodes of the graph, and links are the directed arcs. Each arc of the graph has a name, and the root group has the name “/”. Objects are created and then inserted into the graph with the link operation which creates a named link from a group to the object. For example, the figure below illustrates the structure of an HDF5 file when one data­set is created. An object can be the target of more than one link. The names on the links must be unique within each group, but there may be many links with the same name in different groups. Link names are unambiguous: some ancestor will have a different name, or they are the same object. The graph is navi­gated with path names similar to Unix file systems. An object can be opened with a full path starting at the root group or with a relative path and a starting node (group). Note that all paths are relative to a single HDF5 file. In this sense, an HDF5 file is analogous to a single Unix file system.2



Figure 1-12. An HDF5 file with one dataset

	
[image: Dmodel_fig38_a.JPG]

 

[image: Dmodel_fig38_b.JPG]

 

 








Note: In the figure above are two figures. The top figure represents a newly created file with one group, /. In the bot­tom figure, a dataset called /dset1 has been created.

It is important to note that, just like the Unix file system, HDF5 objects do not have names. The names are associated with paths. An object has a unique (within the file) object identifier, but a single object may have many names because there may be many paths to the same object. An object can be renamed (moved to another group) by adding and deleting links. In this case, the object itself never moves. For that matter, membership in a group has no implication for the physical location of the stored object.

Deleting a link to an object does not necessarily delete the object. The object remains available as long as there is at least one link to it. After all the links to an object are deleted, it can no longer be opened although the storage may or may not be reclaimed.3

It is important to realize that the linking mechanism can be used to construct very complex graphs of objects. For example, it is possible for an object to be shared between several groups and even to have more than one name in the same group. It is also possible for a group to be a member of itself or to be in a “cycle” in the graph. An example of a cycle is where a child is the parent of one of its own ancestors.

1.3.2. HDF5 Path Names and Navigation

The structure of the file constitutes the name space for the objects in the file. A path name is a string of components separated by ‘/’. Each component is the name of a link or the special character “.” for the cur­rent group. Link names (components) can be any string of ASCII characters not containing ‘/’ (except the string “.” which is reserved). However, users are advised to avoid the use of punctuation and non-printing characters because they may create problems for other software. The figure below gives a BNF grammar for HDF5 path names.



Figure 1-13. A BNF grammar for path names

	
PathName ::= AbsolutePathName | RelativePathName

Separator ::= "/" ["/"]*

AbsolutePathName ::= Separator [ RelativePathName ]

RelativePathName ::= Component [ Separator RelativePathName ]*

Component ::=  "." |  Name

Name ::= Character+  -  {"."}

Character ::= {c: c in {{ legal ASCII characters }  -  {'/'}}








 

An object can always be addressed by a full or absolute path which would start at the root group. As already noted, a given object can have more than one full path name. An object can also be addressed by a relative path which would start at a group and include the path to the object.

The structure of an HDF5 file is “self-describing.” This means that it is possible to navigate the file to dis­cover all the objects in the file. Basically, the structure is traversed as a graph starting at one node and recursively visiting the nodes of the graph.

1.3.3. Examples of HDF5 File Structures

The figures below show some possible HDF5 file structures with groups and datasets. The first figure shows the structure of a file with three groups. The second shows a dataset created in “/group1”. The third figure shows the structure after a dataset called dset2 has been added to the root group. The fourth figure shows the structure after another group and dataset have been added.



Figure 1-14. An HDF5 file structure with groups

	
[image: Dmodel_fig40_a.JPG]

 

 








Note: The figure above shows three groups; /group1 and /group2 are members of the root group.



Figure 1-15. An HDF5 file structure with groups and a dataset

	
[image: Dmodel_fig40_b.JPG]

 

 








Note: The figure above shows that a dataset has been created in /group1: /group1/dset1.



Figure 1-16. An HDF5 file structure with groups and datasets

	
[image: Dmodel_fig40_c.JPG]

 

 








Note: In the figure above, another dataset has been added as a member of the root group: /dset2.



Figure 1-17. Anot HDF5 file structure with groups and datasets

	
[image: Dmodel_fig40_d.JPG]

 

 








Note: In the figure above, another group and dataset have been added reusing object names: /group2/group2/dset2.

1.   HDF5 requires random access to the linear address space. For this reason it is not well suited for some data media such as streams.

2.   It could be said that HDF5 extends the organizing concepts of a file system to the internal structure of a single file.

3.   As of HDF5-1.4, the storage used for an object is reclaimed, even if all links are deleted.




2. The HDF5 Library and Programming Model

The HDF5 Library implements the HDF5 abstract data model and storage model. These models were described in the preceding chapter.

Two major objectives of the HDF5 products are to provide tools that can be used on as many computa­tional platforms as possible (portability), and to provide a reasonably object-oriented data model and pro­gramming interface.

To be as portable as possible, the HDF5 Library is implemented in portable C. C is not an object-oriented language, but the library uses several mechanisms and conventions to implement an object model.

One mechanism the HDF5 library uses is to implement the objects as data structures. To refer to an object, the HDF5 library implements its own pointers. These pointers are called identifiers. An identifier is then used to invoke operations on a specific instance of an object. For example, when a group is opened, the API returns a group identifier. This identifier is a reference to that specific group and will be used to invoke future operations on that group. The identifier is valid only within the context it is created and remains valid until it is closed or the file is closed. This mechanism is essentially the same as the mechanism that C++ or other object-oriented languages use to refer to objects except that the syntax is C.

Similarly, object-oriented languages collect all the methods for an object in a single name space. An exam­ple is the methods of a C++ class. The C language does not have any such mechanism, but the HDF5 Library simulates this through its API naming convention. API function names begin with a common prefix that is related to the class of objects that the function operates on. The table below lists the HDF5 objects and the standard prefixes used by the corresponding HDF5 APIs. For example, functions that operate on data­type objects all have names beginning with H5T.



Table 2-1. The HDF5 API naming scheme

 	
Prefix


 	
Operates on





	
H5A


	
Attributes





	
H5D


	
Datasets





	
H5E


	
Error reports





	
H5F


	
Files





	
H5G


	
Groups





	
H5I


	
Identifiers





	
H5L


	
Links





	
H5O


	
Objects





	
H5P


	
Property lists





	
H5R


	
References





	
H5S


	
Dataspaces





	
H5T


	
Datatypes





	
H5Z


	
Filters








 

2.1. The HDF5 Programming Model

In this section we introduce the HDF5 programming model by means of a series of short code samples. These samples illustrate a broad selection of common HDF5 tasks. More details are provided in the follow­ing chapters and in the HDF5 Reference Manual.

2.1.1. Creating an HDF5 File

Before an HDF5 file can be used or referred to in any manner, it must be explicitly created or opened. When the need for access to a file ends, the file must be closed. The example below provides a C code fragment illustrating these steps. In this example, the values for the file creation property list and the file access property list are set to the defaults H5P_DEFAULT.



Code Example 2-1. Creating and closing an HDF5 file

	
hid_t       file;                 /* declare file identifier */

/*

* Create a new file using H5F_ACC_TRUNC

* to truncate and overwrite any file of the same name,

* default file creation properties, and

* default file access properties.

* Then close the file.

*/

file = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

status = H5Fclose(file);








 

Note: If there is a possibility that a file of the declared name already exists and you wish to open a new file regardless of that possibility, the flag H5F_ACC_TRUNC will cause the operation to overwrite the previous file. If the operation should fail in such a circumstance, use the flag H5F_ACC_EXCL instead.

2.1.2. Creating and Initializing a Dataset

The essential objects within a dataset are datatype and dataspace. These are independent objects and are created separately from any dataset to which they may be attached. Hence, creating a dataset requires, at a minimum, the following steps:

1.      Create and initialize a dataspace for the dataset

2.      Define a datatype for the dataset

3.      Create and initialize the dataset

 

The code in the example below illustrates the execution of these steps.



Code Example 2-2. Create a dataset

	
hid_t    dataset, datatype, dataspace;  /* declare identifiers */

 

/*

* Create a dataspace: Describe the size of the array and

* create the dataspace for a fixed-size dataset.

*/

dimsf[0] = NX;

dimsf[1] = NY;

dataspace = H5Screate_simple(RANK, dimsf, NULL);





	
/*

* Define a datatype for the data in the dataset.

* We will store little endian integers.

*/

datatype = H5Tcopy(H5T_NATIVE_INT);

status = H5Tset_order(datatype, H5T_ORDER_LE);





	
/*

* Create a new dataset within the file using the defined

* dataspace and datatype and default dataset creation

* properties.

* NOTE: H5T_NATIVE_INT can be used as the datatype if

* conversion to little endian is not needed.

*/

dataset = H5Dcreate(file, DATASETNAME, datatype, dataspace,

H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);








 

2.1.3. Closing an Object

An application should close an object such as a datatype, dataspace, or dataset once the object is no lon­ger needed. Since each is an independent object, each must be released (or closed) separately. This action is frequently referred to as releasing the object’s identifier. The code in the example below closes the datatype, dataspace, and dataset that were created in the preceding section.



Code Example 2-3. Close an object

	
H5Tclose(datatype);

H5Dclose(dataset);

H5Sclose(dataspace);








 

There is a long list of HDF5 Library items that return a unique identifier when the item is created or opened. Each time that one of these items is opened, a unique identifier is returned. Closing a file does not mean that the groups, datasets, or other open items are also closed. Each opened item must be closed separately.

For more information, see “Using Identifiers” in the “Advanced Topics” page.

How Closing a File Effects Other Open Structural Elements

Every structural element in an HDF5 file can be opened, and these elements can be opened more than once. Elements range in size from the entire file down to attributes. When an element is opened, the HDF5 Library returns a unique identifier to the application. Every element that is opened must be closed. If an element was opened more than once, each identifier that was returned to the application must be closed. For example, if a dataset was opened twice, both dataset identifiers must be released (closed) before the dataset can be considered closed. Suppose an application has opened a file, a group in the file, and two datasets in the group. In order for the file to be totally closed, the file, group, and datasets must each be closed. Closing the file before the group or the datasets will not effect the state of the group or datasets: the group and datasets will still be open.

There are several exceptions to the above general rule. One is when the H5close function is used. H5close causes a general shutdown of the library: all data is written to disk, all identifiers are closed, and all memory used by the library is cleaned up. Another exception occurs on parallel processing systems. Suppose on a parallel system an application has opened a file, a group in the file, and two datasets in the group. If the application uses the H5Fclose function to close the file, the call will fail with an error. The open group and datasets must be closed before the file can be closed. A third exception is when the file access property list includes the property H5F_CLOSE_STRONG. This property closes any open elements when the file is closed with H5Fclose. For more information, see the H5Pset_fclose_degree func­tion in the HDF5 Reference Manual.

2.1.4. Writing or Reading a Dataset to or from a File

Having created the dataset, the actual data can be written with a call to H5Dwrite. See the example below.



Code Example 2-4. Writing a dataset

	
/*

* Write the data to the dataset using default transfer

* properties.

*/

status = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

H5P_DEFAULT, data);








 

Note that the third and fourth H5Dwrite parameters in the above example describe the dataspaces in memory and in the file, respectively. For now, these are both set to H5S_ALL which indicates that the entire dataset is to be written. The selection of partial datasets and the use of differing dataspaces in memory and in storage will be discussed later in this chapter and in more detail elsewhere in this guide.

Reading the dataset from storage is similar to writing the dataset to storage. To read an entire dataset, substitute H5Dread for H5Dwrite in the above example.

2.1.5. Reading and Writing a Portion of a Dataset

The previous section described writing or reading an entire dataset. HDF5 also supports access to portions of a dataset. These parts of datasets are known as selections.

The simplest type of selection is a simple hyperslab. This is an n-dimensional rectangular sub-set of a dataset where n is equal to the dataset’s rank. Other available selections include a more complex hyper­slab with user-defined stride and block size, a list of independent points, or the union of any of these.

The figure below shows several sample selections.



Figure 2-1. Dataset selections

	
[image: Pmodel_fig5_a.jpg]

 





	
[image: Pmodel_fig5_b.jpg]

 





	
[image: Pmodel_fig5_c.jpg]

 





	
[image: Pmodel_fig5_d.jpg]

 





	
[image: Pmodel_fig5_e.jpg]

 

 








Note: In the figure above, selections can take the form of a simple hyperslab, a hyperslab with user-defined stride and block, a selection of points, or a union of any of these forms.

Selections and hyperslabs are portions of a dataset. As described above, a simple hyperslab is a rectangu­lar array of data elements with the same rank as the dataset’s dataspace. Thus, a simple hyperslab is a log­ically contiguous collection of points within the dataset.

The more general case of a hyperslab can also be a regular pattern of points or blocks within the dataspace. Four parameters are required to describe a general hyperslab: the starting coordinates, the block size, the stride or space between blocks, and the number of blocks. These parameters are each expressed as a one-dimensional array with length equal to the rank of the dataspace and are described in the table below.



Table 2-2. Hyperslab parameters

 	
Parameter


 	
Definition





	
start


	
The coordinates of the starting location of the hyperslab in the dataset’s dataspace.





	
block


	
The size of each block to be selected from the dataspace. If the block param­eter is set to NULL, the block size defaults to a single element in each dimen­sion, as if the block array was set to all 1s (all ones). This will result in the selection of a uniformly spaced set of count points starting at start and on the interval defined by stride.





	
stride


	
The number of elements separating the starting point of each element or block to be selected. If the stride parameter is set to NULL, the stride size defaults to 1 (one) in each dimension and no elements are skipped.





	
count


	
The number of elements or blocks to select along each dimension.    








 

Reading Data into a Differently Shaped Memory Block

For maximum flexibility in user applications, a selection in storage can be mapped into a differently-shaped selection in memory. All that is required is that the two selections contain the same number of data elements. In this example, we will first define the selection to be read from the dataset in storage, and then we will define the selection as it will appear in application memory.

Suppose we want to read a 3 x 4 hyperslab from a two-dimensional dataset in a file beginning at the data­set element <1,2>. The first task is to create the dataspace that describes the overall rank and dimensions of the dataset in the file and to specify the position and size of the in-file hyperslab that we are extracting from that dataset. See the code below.



Code Example 2-5. Define the selection to be read from storage

	
/*

* Define dataset dataspace in file.

*/

dataspace = H5Dget_space(dataset);    /* dataspace identifier */

rank      = H5Sget_simple_extent_ndims(dataspace);

status_n  = H5Sget_simple_extent_dims(dataspace, dims_out, NULL);

 





	
/*

* Define hyperslab in the dataset.

*/

offset[0] = 1;

offset[1] = 2;

count[0]  = 3;

count[1]  = 4;

status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset,

NULL, count, NULL);








 

The next task is to define a dataspace in memory. Suppose that we have in memory a three-dimensional 7 x 7 x 3 array into which we wish to read the two-dimensional 3 x 4 hyperslab described above and that we want the memory selection to begin at the element <3,0,0> and reside in the plane of the first two dimen­sions of the array. Since the in-memory dataspace is three-dimensional, we have to describe the in-mem­ory selection as three-dimensional. Since we are keeping the selection in the plane of the first two dimensions of the in-memory dataset, the in-memory selection will be a 3 x 4 x 1 array defined as <3,4,1>.

Notice that we must describe two things: the dimensions of the in-memory array, and the size and posi­tion of the hyperslab that we wish to read in. The code below illustrates how this would be done.



Code Example 2-6. Define the memory dataspace and selection

	
/*

* Define memory dataspace.

*/

dimsm[0] = 7;

dimsm[1] = 7;

dimsm[2] = 3;

memspace = H5Screate_simple(RANK_OUT,dimsm,NULL);   

 





	
/*

* Define memory hyperslab.

*/

offset_out[0] = 3;

offset_out[1] = 0;

offset_out[2] = 0;

count_out[0]  = 3;

count_out[1]  = 4;

count_out[2]  = 1;

status = H5Sselect_hyperslab(memspace, H5S_SELECT_SET,

offset_out, NULL, count_out, NULL);








 

The hyperslab defined in the code above has the following parameters: start=(3,0,0), count=(3,4,1), stride and block size are NULL.

Writing Data into a Differently Shaped Disk Storage Block

Now let’s consider the opposite process of writing a selection from memory to a selection in a dataset in a file. Suppose that the source dataspace in memory is a 50-element, one-dimensional array called vec­tor and that the source selection is a 48-element simple hyperslab that starts at the second element of vector. See the figure below.



Figure 2-2. A one-dimensional array

	
[image: Pmodel_fig2.JPG]

 

 








 

Further suppose that we wish to write this data to the file as a series of 3 x 2-element blocks in a two-dimensional dataset, skipping one row and one column between blocks. Since the source selection con­tains 48 data elements and each block in the destination selection contains 6 data elements, we must define the destination selection with 8 blocks. We will write 2 blocks in the first dimension and 4 in the second. The code below shows how to achieve this objective.



Code Example 2-7. The destination selection

	
/* Select the hyperslab for the dataset in the file, using

* 3 x 2 blocks, a (4,3) stride, a (2,4) count, and starting

* at the position (0,1).

*/





	
start[0]  = 0; start[1]  = 1;

stride[0] = 4; stride[1] = 3;

count[0]  = 2; count[1]  = 4;    

block[0]  = 3; block[1]  = 2;

ret = H5Sselect_hyperslab(fid, H5S_SELECT_SET, start, stride,

count, block);

 





	
/*

* Create dataspace for the first dataset.

*/

mid1 = H5Screate_simple(MSPACE1_RANK, dim1, NULL);

 





	
/*

* Select hyperslab.

* We will use 48 elements of the vector buffer starting at the

* second element. Selected elements are 1 2 3 . . . 48

*/





	
start[0]  = 1;

stride[0] = 1;

count[0]  = 48;

block[0]  = 1;

ret = H5Sselect_hyperslab(mid1, H5S_SELECT_SET, start, stride,

count, block);

 

/*

* Write selection from the vector buffer to the dataset in the

* file.

*

ret = H5Dwrite(dataset, H5T_NATIVE_INT, mid1, fid, H5P_DEFAULT,

vector)








 

2.1.6. Getting Information about a Dataset

Although reading is analogous to writing, it is often first necessary to query a file to obtain information about the dataset to be read. For instance, we often need to determine the datatype associated with a dataset, or its dataspace (in other words, rank and dimensions). As illustrated in the code example below, there are several get routines for obtaining this information.



Code Example 2-8. Routines to get dataset parameters

	
/*

* Get datatype and dataspace identifiers,  

* then query datatype class, order, and size, and

* then query dataspace rank and dimensions.

*/

 

datatype = H5Dget_type (dataset);  /* datatype identifier */

class = H5Tget_class (datatype);

if (class == H5T_INTEGER) printf("Dataset has INTEGER type \n");

order = H5Tget_order (datatype);

if (order == H5T_ORDER_LE) printf("Little endian order \n");

 





	
size = H5Tget_size (datatype);

printf ("Size is %d \n", size);

dataspace = H5Dget_space (dataset); /* dataspace identifier */

 

/* Find rank and retrieve current and maximum dimension

* sizes.

*/

 

rank = H5Sget_simple_extent_dims (dataspace, dims, max_dims);








 

2.1.7. Creating and Defining Compound Datatypes

A compound datatype is a collection of one or more data elements. Each element might be an atomic type, a small array, or another compound datatype.

The provision for nested compound datatypes allows these structures to become quite complex. An HDF5 compound datatype has some similarities to a C struct or a Fortran common block. Though not originally designed with databases in mind, HDF5 compound datatypes are sometimes used in a way that is similar to a database record. Compound datatypes can become either a powerful tool or a complex and difficult-to-debug construct. Reasonable caution is advised.

To create and use a compound datatype, you need to create a datatype with class compound (H5T_COM­POUND) and specify the total size of the data element in bytes. A compound datatype consists of zero or more uniquely named members. Members can be defined in any order but must occupy non-overlapping regions within the datum. The table below lists the properties of compound datatype members.



Table 2-3. Compound datatype member properties

 	
Parameter


 	
Definition





	
Index


	
An index number between zero and N-1, where N is the number of members in the compound. The elements are indexed in the order of their location in the array of bytes.





	
Name


	
A string that must be unique within the members of the same datatype.





	
Datatype


	
An HDF5 datatype.





	
Offset


	
A fixed byte offset which defines the location of the first byte of that member in the compound datatype.








 

Properties of the members of a compound datatype are defined when the member is added to the com­pound type. These properties cannot be modified later.

Defining Compound Datatypes

Compound datatypes must be built out of other datatypes. To do this, you first create an empty com­pound datatype and specify its total size. Members are then added to the compound datatype in any order.

Each member must have a descriptive name. This is the key used to uniquely identify the member within the compound datatype. A member name in an HDF5 datatype does not necessarily have to be the same as the name of the corresponding member in the C struct in memory although this is often the case. You also do not need to define all the members of the C struct in the HDF5 compound datatype (or vice versa).

Usually a C struct will be defined to hold a data point in memory, and the offsets of the members in mem­ory will be the offsets of the struct members from the beginning of an instance of the struct. The library defines the macro that computes the offset of member m within a struct variable s:

HOFFSET(s,m)

The code below shows an example in which a compound datatype is created to describe complex num­bers whose type is defined by the complex_t struct.



Code Example 2-9. A compound datatype for complex numbers

	
Typedef struct {

double re;   /*real part */

double im;   /*imaginary part */

} complex_t;

 

complex_t tmp;  /*used only to compute offsets */

hid_t complex_id = H5Tcreate (H5T_COMPOUND, sizeof tmp);

H5Tinsert (complex_id, "real", HOFFSET(tmp,re),

H5T_NATIVE_DOUBLE);

H5Tinsert (complex_id, "imaginary", HOFFSET(tmp,im),

H5T_NATIVE_DOUBLE);








 

2.1.8. Creating and Writing Extendable Datasets

An extendable dataset is one whose dimensions can grow. One can define an HDF5 dataset to have certain initial dimensions with the capacity to later increase the size of any of the initial dimensions. For example, the figure below shows a  3 x 3 dataset (a) which is later extended to be a 10 x 3 dataset by adding 7 rows (b), and further extended to be a 10 x 5 dataset by adding two columns (c).



Figure 2-3. Extending a dataset

	
[image: Pmodel_fig3.JPG]

 

 








 

HDF5 requires the use of chunking when defining extendable datasets. Chunking makes it possible to extend datasets efficiently without having to reorganize contiguous storage excessively.

To summarize, an extendable dataset requires two conditions:

1.      Define the dataspace of the dataset as unlimited in all dimensions that might eventually be extended

2.      Enable chunking in the dataset creation properties

For example, suppose we wish to create a dataset similar to the one shown in the figure above. We want to start with a 3 x 3 dataset, and then later we will extend it. To do this, go through the steps below.

First, declare the dataspace to have unlimited dimensions. See the code shown below. Note the use of the predefined constant H5S_UNLIMITED to specify that a dimension is unlimited.



Code Example 2-10. Declaring a dataspace with unlimited dimensions

	
/* dataset dimensions at creation time */

Hsize_t dims[2] = {3, 3};

hsize_t maxdims[2] = {H5S_UNLIMITED, H5S_UNLIMITED};

 

/*

* Create the data space with unlimited dimensions.

*/

dataspace = H5Screate_simple(RANK, dims, maxdims);








 

Next, set the dataset creation property list to enable chunking. See the code below.



Code Example 2-11. Enable chunking

	
hid_t cparms;

hsize_t chunk_dims[2] ={2, 5};

/*

* Modify dataset creation properties to enable chunking.

*/

cparms = H5Pcreate (H5P_DATASET_CREATE);

status = H5Pset_chunk(cparms, RANK, chunk_dims);








 

The next step is to create the dataset. See the code below.



Code Example 2-12. Create a dataset

	
/*

* Create a new dataset within the file using cparms

* creation properties.

*/

dataset = H5Dcreate(file, DATASETNAME, H5T_NATIVE_INT, dataspace,

H5P_DEFAULT, cparms, H5P_DEFAULT);








 

Finally, when the time comes to extend the size of the dataset, invoke H5Dextend. Extending the dataset along the first dimension by seven rows leaves the dataset with new dimensions of <10,3>. See the code below.



Code Example 2-13. Extend the dataset by seven rows

	
/*

* Extend the dataset. Dataset becomes 10 x 3.

*/

dims[0] = dims[0] + 7;

size[0] = dims[0];

size[1] = dims[1];

status = H5Dextend (dataset, size);








 

2.1.9. Creating and Working with Groups

Groups provide a mechanism for organizing meaningful and extendable sets of datasets within an HDF5 file. The H5G API provides several routines for working with groups.

 

Creating a Group

With no datatype, dataspace, or storage layout to define, creating a group is considerably simpler than creating a dataset. For example, the following code creates a group called Data in the root group of file.



Code Example 2-14. Create a group

	
/*

*  Create a group in the file.

*/

grp = H5Gcreate(file, "/Data", H5P_DEFAULT, H5P_DEFAULT,

H5P_DEFAULT);








 

A group may be created within another group by providing the absolute name of the group to the H5Gcreate function or by specifying its location. For example, to create the group Data_new in the group Data, you might use the sequence of calls shown below.



Code Example 2-15. Create a group within a group

	
/*

* Create group "Data_new" in the group "Data" by specifying

* absolute name of the group.

*/

grp_new = H5Gcreate(file, "/Data/Data_new", H5P_DEFAULT,

H5P_DEFAULT, H5P_DEFAULT);

 

or

 

/*

* Create group "Data_new" in the "Data" group.

*/

grp_new = H5Gcreate(grp, "Data_new", H5P_DEFAULT, H5P_DEFAULT,

H5P_DEFAULT);








 

This first parameter of H5Gcreate is a location identifier. file in the first example specifies only the file. grp in the second example specifies a particular group in a particular file. Note that in this instance, the group identifier grp is used as the first parameter in the H5Gcreate call so that the relative name of Data_new can be used.

The third parameter of H5Gcreate optionally specifies how much file space to reserve to store the names of objects that will be created in this group. If a non-positive value is supplied, the library provides a default size.

Use H5Gclose to close the group and release the group identifier.

Creating a Dataset within a Group

As with groups, a dataset can be created in a particular group by specifying either its absolute name in the file or its relative name with respect to that group. The next code excerpt uses the absolute name.



Code Example 2-16. Create a dataset within a group using an absolute name

	
/*

* Create the dataset "Compressed_Data" in the group Data using

* the absolute name. The dataset creation property list is

* modified to use GZIP compression with the compression

* effort set to 6. Note that compression can be used only when

* the dataset is chunked.

*/





	
dims[0] = 1000;

dims[1] = 20;

cdims[0] = 20;

cdims[1] = 20;

dataspace = H5Screate_simple(RANK, dims, NULL);

plist = H5Pcreate(H5P_DATASET_CREATE);

H5Pset_chunk(plist, 2, cdims);

H5Pset_deflate(plist, 6);

dataset = H5Dcreate(file, "/Data/Compressed_Data",

H5T_NATIVE_INT, dataspace, H5P_DEFAULT, plist, H5P_DEFAULT);








 

Alternatively, you can first obtain an identifier for the group in which the dataset is to be created, and then create the dataset with a relative name.



Code Example 2-17. Create a dataset within a group using a relative name

	
/*

* Open the group.

*/

grp = H5Gopen(file, "Data", H5P_DEFAULT);

 

/*

* Create the dataset "Compressed_Data" in the "Data" group

* by providing a group identifier and a relative dataset

* name as parameters to the H5Dcreate function.

*/

dataset = H5Dcreate(grp, "Compressed_Data", H5T_NATIVE_INT,

dataspace, H5P_DEFAULT, plist, H5P_DEFAULT);








 

Accessing an Object in a Group

Any object in a group can be accessed by its absolute or relative name. The first code snippet below illus­trates the use of the absolute name to access the dataset Compressed_Data in the group Data created in the examples above. The second code snippet illustrates the use of the relative name.



Code Example 2-18. Accessing a group using its absolute name

	
/*

* Open the dataset "Compressed_Data" in the "Data" group.

*/

dataset = H5Dopen(file, "/Data/Compressed_Data", H5P_DEFAULT);










Code Example 2-19. Accessing a group using its relative name

	
/*

* Open the group "data" in the file.

*/

grp  = H5Gopen(file, "Data", H5P_DEFAULT);

 

/*

* Access the "Compressed_Data" dataset in the group.

*/

dataset = H5Dopen(grp, "Compressed_Data", H5P_DEFAULT);








 

2.1.10. Working with Attributes

An attribute is a small dataset that is attached to a normal dataset or group. Attributes share many of the characteristics of datasets, so the programming model for working with attributes is similar in many ways to the model for working with datasets. The primary differences are that an attribute must be attached to a dataset or a group and sub-setting operations cannot be performed on attributes.

To create an attribute belonging to a particular dataset or group, first create a dataspace for the attribute with the call to H5Screate, and then create the attribute using H5Acreate. For example, the code shown below creates an attribute called Integer_attribute that is a member of a dataset whose iden­tifier is dataset. The attribute identifier is attr2. H5Awrite then sets the value of the attribute of that of the integer variable point. H5Aclose then releases the attribute identifier.



Code Example 2-20. Create an attribute

	
Int point = 1; /* Value of the scalar attribute */

 





	
/*

* Create scalar attribute.

*/

aid2 = H5Screate(H5S_SCALAR);

attr2 = H5Acreate(dataset, "Integer attribute", H5T_NATIVE_INT,

aid2, H5P_DEFAULT, H5P_DEFAULT);

 





	
/*

* Write scalar attribute.

*/

ret = H5Awrite(attr2, H5T_NATIVE_INT, &point);

 





	
/*

* Close attribute dataspace.

*/

ret = H5Sclose(aid2);

 

/*

* Close attribute.

*/

ret = H5Aclose(attr2);








 

To read a scalar attribute whose name and datatype are known, first open the attribute using H5Aop­en_by_name, and then use H5Aread to get its value. For example, the code shown below reads a scalar attribute called Integer_attribute whose datatype is a native integer and whose parent dataset has the identifier dataset.



Code Example 2-21. Read a known attribute

	
/*

* Attach to the scalar attribute using attribute name, then

* read and display its value.

*/

attr = H5Aopen_by_name(file_id, dataset_name,

"Integer attribute", H5P_DEFAULT, H5P_DEFAULT);

ret = H5Aread(attr, H5T_NATIVE_INT, &point_out);

printf("The value of the attribute \"Integer attribute\"

is %d \n", point_out);

ret = H5Aclose(attr);








 

To read an attribute whose characteristics are not known, go through these steps. First, query the file to obtain information about the attribute such as its name, datatype, rank, and dimensions, and then read the attribute. The following code opens an attribute by its index value using H5Aopen_by_idx, and then it reads in information about the datatype with H5Aread.



Code Example 2-22. Read an unknown attribute

	
/*

* Attach to the string attribute using its index, then read and

* display the value.

*/

attr = H5Aopen_by_idx(file_id, dataset_name, index_type,

iter_order, 2, H5P_DEFAULT, H5P_DEFAULT);

atype = H5Tcopy(H5T_C_S1);

H5Tset_size(atype, 4);

ret = H5Aread(attr, atype, string_out);

printf("The value of the attribute with the index 2 is %s \n",

string_out);








 

In practice, if the characteristics of attributes are not known, the code involved in accessing and process­ing the attribute can be quite complex. For this reason, HDF5 includes a function called H5Aiterate. This function applies a user-supplied function to each of a set of attributes. The user-supplied function can contain the code that interprets, accesses, and processes each attribute.

2.2. The Data Transfer Pipeline

The HDF5 Library implements data transfers between different storage locations. At the lowest levels, the HDF5 Library reads and writes blocks of bytes to and from storage using calls to the virtual file layer (VFL) drivers. In addition to this, the HDF5 Library manages caches of metadata and a data I/O pipeline. The data I/O pipeline applies compression to data blocks, transforms data elements, and implements selections.

A substantial portion of the HDF5 Library’s work is in transferring data from one environment or media to another. This most often involves a transfer between system memory and a storage medium. Data trans­fers are affected by compression, encryption, machine-dependent differences in numerical representa­tion, and other features. So, the bit-by-bit arrangement of a given dataset is often substantially different in the two environments.

Consider the representation on disk of a compressed and encrypted little-endian array as compared to the same array after it has been read from disk, decrypted, decompressed, and loaded into memory on a big-endian system. HDF5 performs all of the operations necessary to make that transition during the I/O pro­cess with many of the operations being handled by the VFL and the data transfer pipeline.

The figure below provides a simplified view of a sample data transfer with four stages. Note that the mod­ules are used only when needed. For example, if the data is not compressed, the compression stage is omitted.



Figure 2-4. A data transfer from storage to memory

	
[image: Pmodel_fig26.JPG]

 

 








 

For a given I/O request, different combinations of actions may be performed by the pipeline. The library automatically sets up the pipeline and passes data through the processing steps. For example, for a read request (from disk to memory), the library must determine which logical blocks contain the requested data elements and fetch each block into the library’s cache. If the data needs to be decompressed, then the compression algorithm is applied to the block after it is read from disk. If the data is a selection, the selected elements are extracted from the data block after it is decompressed. If the data needs to be transformed (for example, byte swapped), then the data elements are transformed after decompression and selection.

While an application must sometimes set up some elements of the pipeline, use of the pipeline is nor­mally transparent to the user program. The library determines what must be done based on the metadata for the file, the object, and the specific request. An example of when an application might be required to set up some elements in the pipeline is if the application used a custom error-checking algorithm.

In some cases, it is necessary to pass parameters to and from modules in the pipeline or among other parts of the library that are not directly called through the programming API. This is accomplished through the use of dataset transfer and data access property lists.

The VFL provides an interface whereby user applications can add custom modules to the data transfer pipeline. For example, a custom compression algorithm can be used with the HDF5 Library by linking an appropriate module into the pipeline through the VFL. This requires creating an appropriate wrapper for the compression module and registering it with the library with H5Zregister. The algorithm can then be applied to a dataset with an H5Pset_filter call which will add the algorithm to the selected dataset’s transfer property list.

 




3. The HDF5 File

The purpose of this chapter is to describe how to work with HDF5 data files.

If HDF5 data is to be written to or read from a file, the file must first be explicitly created or opened with the appropriate file driver and access privileges. Once all work with the file is complete, the file must be explicitly closed.

This chapter discusses the following:

•        File access modes

•        Creating, opening, and closing files

•        The use of file creation property lists

•        The use of file access property lists

•        The use of low-level file drivers

This chapter assumes an understanding of the material presented in the data model chapter. For more information, see "The HDF5 Data Model and File Structure."

3.1. File Access Modes

There are two issues regarding file access:

•        What should happen when a new file is created but a file of the same name already exists? Should the create action fail, or should the existing file be overwritten?

•        Is a file to be opened with read-only or read-write access?

Four access modes address these concerns. Two of these modes can be used with H5Fcreate, and two modes can be used with H5Fopen.

•        H5Fcreate accepts H5F_ACC_EXCL or H5F_ACC_TRUNC 

•        H5Fopen accepts H5F_ACC_RDONLY or H5F_ACC_RDWR

The access modes are described in the table below.



Table 3-1. Access flags and modes

 	
Access Flag


 	
Resulting Access Mode





	
H5F_ACC_EXCL


	
If the file already exists, H5Fcreate fails. If the file does not exist, it is created and opened with read-write access. (Default)





	
H5F_ACC_TRUNC


	
If the file already exists, the file is opened with read-write access, and new data will overwrite any existing data. If the file does not exist, it is created and opened with read-write access.





	
H5F_ACC_RDONLY


	
An existing file is opened with read-only access. If the file does not exist, H5Fopen fails. (Default)





	
H5F_ACC_RDWR


	
An existing file is opened with read-write access. If the file does not exist, H5Fopen fails.








 

By default, H5Fopen opens a file for read-only access; passing H5F_ACC_RDWR allows read-write access to the file.

By default, H5Fcreate fails if the file already exists; only passing H5F_ACC_TRUNC allows the truncating of an existing file.

3.2. File Creation and File Access Properties

File creation and file access property lists control the more complex aspects of creating and accessing files.

File creation property lists control the characteristics of a file such as the size of the userblock, a user-definable data block; the size of data address parameters; properties of the B-trees that are used to man­age the data in the file; and certain HDF5 library versioning information.

For more information, see "File Creation Properties."This section has a more detailed discus­sion of file creation properties. If you have no special requirements for these file characteristics, you can simply specify H5P_DEFAULT for the default file creation property list when a file creation property list is called for.

File access property lists control properties and means of accessing a file such as data alignment charac­teristics, metadata block and cache sizes, data sieve buffer size, garbage collection settings, and parallel I/O. Data alignment, metadata block and cache sizes, and data sieve buffer size are factors in improving I/O performance.

For more information, see "File Access Properties."This section has a more detailed discussion of file access properties. If you have no special requirements for these file access characteristics, you can simply specify H5P_DEFAULT for the default file access property list when a file access property list is called for.



Figure 3-1. UML model for an HDF5 file and its property lists

	
[image: UML_FileAndProps.gif]

 

 








 

3.3. Low-level File Drivers

The concept of an HDF5 file is actually rather abstract: the address space for what is normally thought of as an HDF5 file might correspond to any of the following at the storage level:

•        Single file on a standard file system

•        Multiple files on a standard file system

•        Multiple files on a parallel file system

•        Block of memory within an application’s memory space

•        More abstract situations such as virtual files

This HDF5 address space is generally referred to as an HDF5 file regardless of its organization at the stor­age level.

HDF5 accesses a file (the address space) through various types of low-level file drivers. The default HDF5 file storage layout is as an unbuffered permanent file which is a single, contiguous file on local disk. Alter­native layouts are designed to suit the needs of a variety of systems, environments, and applications.

3.4. Programming Model for Files

Programming models for creating, opening, and closing HDF5 files are described in the sub-sections below.

3.4.1. Creating a New File

The programming model for creating a new HDF5 file can be summarized as follows:

•        Define the file creation property list

•        Define the file access property list

•        Create the file

First, consider the simple case where we use the default values for the property lists. See the example below.



Code Example 3-1. Creating an HDF5 file using property list defaults

	
file_id = H5Fcreate ("SampleFile.h5", H5F_ACC_EXCL,

H5P_DEFAULT, H5P_DEFAULT)








Note: The example above specifies that H5Fcreate should fail if SampleFile.h5 already exists.

A more complex case is shown in the example below. In this example, we define file creation and access property lists (though we do not assign any properties), specify that H5Fcreate should fail if Sample­File.h5 already exists, and create a new file named SampleFile.h5. The example does not specify a driver, so the default driver, H5FD_SEC2, will be used.



Code Example 3-2. Creating an HDF5 file using property lists

	
fcplist_id = H5Pcreate (H5P_FILE_CREATE)

<...set desired file creation properties...>

faplist_id = H5Pcreate (H5P_FILE_ACCESS)

<...set desired file access properties...>

file_id = H5Fcreate ("SampleFile.h5", H5F_ACC_EXCL,

fcplist_id, faplist_id)








 

Notes:

A root group is automatically created in a file when the file is first created.

File property lists, once defined, can be reused when another file is created within the same application.

3.4.2. Opening an Existing File

The programming model for opening an existing HDF5 file can be summarized as follows:

•        Define or modify the file access property list including a low-level file driver (optional)

•        Open the file

The code in the example below shows how to open an existing file with read-only access.



Code Example 3-3. Opening an HDF5 file

	
faplist_id = H5Pcreate (H5P_FILE_ACCESS)

status = H5Pset_fapl_stdio (faplist_id)

file_id = H5Fopen ("SampleFile.h5", H5F_ACC_RDONLY,

faplist_id)








 

3.4.3. Closing a File

The programming model for closing an HDF5 file is very simple:

•        Close file

We close SampleFile.h5 with the code in the example below.



Code Example 3-4. Closing an HDF5 file

	
status = H5Fclose (file_id)








 

Note that H5Fclose flushes all unwritten data to storage and that file_id is the identifier returned for SampleFile.h5 by H5Fopen.

More comprehensive discussions regarding all of these steps are provided below.

3.5. Using h5dump to View a File

h5dump is a command-line utility that is included in the HDF5 distribution. This program provides a straight-forward means of inspecting the contents of an HDF5 file. You can use h5dump to verify that a program is generating the intended HDF5 file. h5dump displays ASCII output formatted according to the HDF5 DDL grammar.

The following h5dump command will display the contents of SampleFile.h5:

h5dump SampleFile.h5

If no datasets or groups have been created in and no data has been written to the file, the output will look something like the following:

HDF5 "SampleFile.h5" {

GROUP "/" {

}

}

Note that the root group, indicated above by /, was automatically created when the file was created.

h5dump is described on the Tools page of the HDF5 Reference Manual. The HDF5 DDL grammar is described in the document DDL in BNF for HDF5.

3.6. File Function Summaries

General library functions and macros (H5), file functions (H5F), file related property list functions (H5P), and file driver functions (H5P) are listed below.



Function Listing 3-1. General library functions and macros (H5)

 	
C Function

Fortran Function


 	
Purpose





	
H5check_version

h5check_version_f


	
Verifies that HDF5 library versions are consis­tent.





	
H5close

h5close_f


	
Flushes all data to disk, closes all open identi­fiers, and cleans up memory.





	
H5dont_atexit

h5dont_atexit_f


	
Instructs the library not to install the atexit cleanup routine.





	
H5garbage_collect

h5garbage_collect_f


	
Garbage collects on all free-lists of all types.





	
H5get_libversion

h5get_libversion_f


	
Returns the HDF library release number.





	
H5open

h5open_f


	
Initializes the HDF5 library.





	
H5set_free_list_limits

h5set_free_list_limits_f


	
Sets free-list size limits.





	
H5_VERSION_GE

(no Fortran subroutine)


	
Determines whether the version of the library being used is greater than or equal to the specified version.





	
H5_VERSION_LE

(no Fortran subroutine)


	
Determines whether the version of the library being used is less than or equal to the speci­fied version.










Function Listing 3-2. File functions (H5F)

 	
C Function

Fortran Function


 	
Purpose





	
H5Fclear_elink_file_cache

(no Fortran subroutine)


	
Clears the external link open file cache for a file.





	
H5Fclose

h5fclose_f


	
Closes HDF5 file.





	
H5Fcreate

h5fcreate_f


	
Creates new HDF5 file.





	
H5Fflush

h5fflush_f


	
Flushes data to HDF5 file on storage medium.





	
H5Fget_access_plist

h5fget_access_plist_f


	
Returns a file access property list identifier.





	
H5Fget_create_plist

h5fget_create_plist_f


	
Returns a file creation property list identifier.





	
H5Fget_file_image

h5fget_file_image_f


	
Retrieves a copy of the image of an existing, open file.





	
H5Fget_filesize

h5fget_filesize_f


	
Returns the size of an HDF5 file.





	
H5Fget_freespace

h5fget_freespace_f


	
Returns the amount of free space in a file.





	
H5Fget_info

(no Fortran subroutine)


	
Returns global information for a file.





	
H5Fget_intent

(no Fortran subroutine)


	
Determines the read/write or read-only status of a file.





	
H5Fget_mdc_config

(no Fortran subroutine)


	
Obtain current metadata cache configuration for target file.





	
H5Fget_mdc_hit_rate

(no Fortran subroutine)


	
Obtain target file’s metadata cache hit rate.





	
H5Fget_mdc_size

(no Fortran subroutine)


	
Obtain current metadata cache size data for specified file.





	
H5Fget_mpi_atomicity

h5fget_mpi_atomicity_f


	
Retrieves the atomicity mode in use.





	
H5Fget_name

h5fget_name_f


	
Retrieves the name of the file to which the object belongs.





	
H5Fget_obj_count

h5fget_obj_count_f


	
Returns the number of open object identifiers for an open file.





	
H5Fget_obj_ids

h5fget_obj_ids_f


	
Returns a list of open object identifiers.





	
H5Fget_vfd_handle

(no Fortran subroutine)


	
Returns pointer to the file handle from the virtual file driver.





	
H5Fis_hdf5

h5fis_hdf5_f


	
Determines whether a file is in the HDF5 for­mat.





	
H5Fmount

h5fmount_f


	
Mounts a file.





	
H5Fopen

h5fopen_f


	
Opens existing HDF5 file.





	
H5Freopen

h5freopen_f


	
Returns a new identifier for a previously-opened HDF5 file.





	
H5Freset_mdc_hit_rate_stats

(no Fortran subroutine)


	
Reset hit rate statistics counters for the target file.





	
H5Fset_mdc_config

(no Fortran subroutine)


	
Use to configure metadata cache of target file.





	
H5Fset_mpi_atomicity

h5fset_mpi_atomicity_f


	
Use to set the MPI atomicity mode.





	
H5Funmount

h5funmount_f


	
Unmounts a file.










Function Listing 3-3. File creation property list functions (H5P)

 	
C Function

Fortran Function


 	
Purpose





	
H5Pset/get_userblock

h5pset/get_userblock_f


	
Sets/retrieves size of userblock.





	
H5Pset/get_sizes

h5pset/get_sizes_f


	
Sets/retrieves byte size of offsets and lengths used to address objects in HDF5 file.





	
H5Pset/get_sym_k

h5pset/get_sym_k_f


	
Sets/retrieves size of parameters used to con­trol symbol table nodes.





	
H5Pset/get_istore_k

h5pset/get_istore_k_f


	
Sets/retrieves size of parameter used to con­trol B-trees for indexing chunked datasets.





	
H5Pget_file_image

h5pget_file_image_f


	
Retrieves a copy of the file image designated as the initial content and structure of a file.





	
H5Pset_file_image

h5pset_file_image_f


	
Sets an initial file image in a memory buffer.





	
H5Pset_shared_mesg_nindexes

h5pset_shared_mesg_nindexes_f


	
Sets number of shared object header mes­sage indexes.





	
H5Pget_shared_mesg_nindexes

(no Fortran subroutine)


	
Retrieves number of shared object header message indexes in file creation property list.





	
H5Pset_shared_mesg_index

h5pset_shared_mesg_index_f


	
Configures the specified shared object header message index.





	
H5Pget_shared_mesg_index

(no Fortran subroutine)


	
Retrieves the configuration settings for a shared message index.





	
H5Pset_shared_mesg_phase_change

(no Fortran subroutine)


	
Sets shared object header message storage phase change thresholds.





	
H5Pget_shared_mesg_phase_change

(no Fortran subroutine)


	
Retrieves shared object header message phase change information.





	
H5Pget_version

h5pget_version_f


	
Retrieves version information for various objects for file creation property list.










Function Listing 3-4. File access property list functions (H5P)

 	
C Function

Fortran Function


 	
Purpose





	
H5Pset/get_alignment

h5pset/get_alignment_f


	
Sets/retrieves alignment properties.





	
H5Pset/get_cache

h5pset/get_cache_f


	
Sets/retrieves metadata cache and raw data chunk cache parameters.





	
H5Pset/get_elink_file_cache_size

(no Fortran subroutine)


	
Sets/retrieves the size of the external link open file cache from the specified file access property list.





	
H5Pset/get_fclose_degree

h5pset/get_fclose_degree_f


	
Sets/retrieves file close degree property.





	
H5Pset/get_gc_references

h5pset/get_gc_references_f


	
Sets/retrieves garbage collecting references flag.





	
H5Pset_family_offset

h5pset_family_offset_f


	
Sets offset property for low-level access to a file in a family of files.





	
H5Pget_family_offset

(no Fortran subroutine)


	
Retrieves a data offset from the file access property list.





	
H5Pset/get_meta_block_size

h5pset/get_meta_block_size_f


	
Sets the minimum metadata block size or retrieves the current metadata block size set­ting.





	
H5Pset_mdc_config

(no Fortran subroutine)


	
Set the initial metadata cache configuration in the indicated File Access Property List to the supplied value.





	
H5Pget_mdc_config

(no Fortran subroutine)


	
Get the current initial metadata cache config­uration from the indicated File Access Prop­erty List.





	
H5Pset/get_sieve_buf_size

h5pset/get_sieve_buf_size_f


	
Sets/retrieves maximum size of data sieve buffer.





	
H5Pset_libver_bounds

h5pset_libver_bounds_f


	
Sets bounds on library versions, and indirectly format versions, to be used when creating objects.





	
H5Pget_libver_bounds

(no Fortran subroutine)


	
Retrieves library version bounds settings that indirectly control the format versions used when creating objects.





	
H5Pset_small_data_block_size

h5pset_small_data_block_size_f


	
Sets the size of a contiguous block reserved for small data.





	
H5Pget_small_data_block_size

h5pget_small_data_block_size_f


	
Retrieves the current small data block size setting.










Function Listing 3-5. File driver functions (H5P)

 	
C Function

Fortran Function


 	
Purpose





	
H5Pset_driver

(no Fortran subroutine)


	
Sets a file driver.





	
H5Pget_driver

h5pget_driver_f


	
Returns the identifier for the driver used to create a file.





	
H5Pget_driver_info

(no Fortran subroutine)


	
Returns a pointer to file driver information.





	
H5Pset/get_fapl_core

h5pset/get_fapl_core_f


	
Sets the driver for buffered memory files (in RAM) or retrieves information regarding the driver.





	
H5Pset_fapl_direct

h5pset_fapl_direct_f


	
Sets up use of the direct I/O driver.





	
H5Pget_fapl_direct

h5pget_fapl_direct_f


	
Retrieves the direct I/O driver settings.





	
H5Pset/get_fapl_family

h5pset/get_fapl_family_f


	
Sets driver for file families, designed for sys­tems that do not support files larger than 2 gigabytes, or retrieves information regarding driver.





	
H5Pset_fapl_log

(no Fortran subroutine)


	
Sets logging driver.





	
H5Pset/get_fapl_mpio

h5pset/get_fapl_mpio_f


	
Sets driver for files on parallel file systems (MPI I/O) or retrieves information regarding the driver.





	
H5Pset_fapl_mpiposix

h5pset_fapl_mpiposix_f


	
No longer available.





	
H5Pget_fapl_mpiposix

h5pget_fapl_mpiposix_f


	
No longer available.





	
H5Pset/get_fapl_multi

h5pset/get_fapl_multi_f


	
Sets driver for multiple files, separating cate­gories of metadata and raw data, or retrieves information regarding driver.





	
H5Pset_fapl_sec2

h5pset_fapl_sec2_f


	
Sets driver for unbuffered permanent files or retrieves information regarding driver.





	
H5Pset_fapl_split

h5pset_fapl_split_f


	
Sets driver for split files, a limited case of mul­tiple files with one metadata file and one raw data file.





	
H5Pset_fapl_stdio

H5Pset_fapl_stdio_f


	
Sets driver for buffered permanent files.





	
H5Pset_fapl_windows

(no Fortran subroutine)


	
Sets the Windows I/O driver.





	
H5Pset_multi_type

(no Fortran subroutine)


	
Specifies type of data to be accessed via the MULTI driver enabling more direct access.





	
H5Pget_multi_type

(no Fortran subroutine)


	
Retrieves type of data property for MULTI driver.








 

3.7. Creating or Opening an HDF5 File

This section describes in more detail how to create and how to open files.

New HDF5 files are created and opened with H5Fcreate; existing files are opened with H5Fopen. Both functions return an object identifier which must eventually be released by calling H5Fclose.

To create a new file, call H5Fcreate:

hid_t H5Fcreate (const char *name, unsigned flags, hid_t fcpl_id,

               hid_t fapl_id)

H5Fcreate creates a new file named name in the current directory. The file is opened with read and write access; if the H5F_ACC_TRUNC flag is set, any pre-existing file of the same name in the same directory is truncated. If H5F_ACC_TRUNC is not set or H5F_ACC_EXCL is set and if a file of the same name exists, H5Fcreate will fail.

The new file is created with the properties specified in the property lists fcpl_id and fapl_id. fcpl is short for file creation property list. fapl is short for file access property list. Specifying H5P_DEFAULT for either the creation or access property list calls for the library’s default creation or access properties.

If H5Fcreate successfully creates the file, it returns a file identifier for the new file. This identifier will be used by the application any time an object identifier, an OID, for the file is required. Once the application has finished working with a file, the identifier should be released and the file closed with H5Fclose.

To open an existing file, call H5Fopen:

hid_t H5Fopen (const char *name, unsigned flags, hid_t fapl_id)

H5Fopen opens an existing file with read-write access if H5F_ACC_RDWR is set and read-only access if H5F_ACC_RDONLY is set.

fapl_id is the file access property list identifier. Alternatively, H5P_DEFAULT indicates that the applica­tion relies on the default I/O access parameters. Creating and changing access property lists is docu­mented further below.

A file can be opened more than once via multiple H5Fopen calls. Each such call returns a unique file iden­tifier and the file can be accessed through any of these file identifiers as long as they remain valid. Each of these file identifiers must be released by calling H5Fclose when it is no longer needed.

For more information, see "File Access Modes."

For more information, see "File Property Lists." 

3.8. Closing an HDF5 File

H5Fclose both closes a file and releases the file identifier returned by H5Fopen or H5Fcreate. H5F­close must be called when an application is done working with a file; while the HDF5 Library makes every effort to maintain file integrity, failure to call H5Fclose may result in the file being abandoned in an incomplete or corrupted state.

To close a file, call H5Fclose:

herr_t H5Fclose (hid_t file_id)

This function releases resources associated with an open file. After closing a file, the file identifier, file_id, cannot be used again as it will be undefined.

H5Fclose fulfills three purposes: to ensure that the file is left in an uncorrupted state, to ensure that all data has been written to the file, and to release resources. Use H5Fflush if you wish to ensure that all data has been written to the file but it is premature to close it.

Note regarding serial mode behavior: When H5Fclose is called in serial mode, it closes the file and termi­nates new access to it, but it does not terminate access to objects that remain individually open within the file. That is, if H5Fclose is called for a file but one or more objects within the file remain open, those objects will remain accessible until they are individually closed. To illustrate, assume that a file, fileA, contains a dataset, data_setA, and that both are open when H5Fclose is called for fileA. data_setA will remain open and accessible, including writable, until it is explicitly closed. The file will be automati­cally and finally closed once all objects within it have been closed.

Note regarding parallel mode behavior: Once H5Fclose has been called in parallel mode, access is no longer available to any object within the file.

3.9. File Property Lists

Additional information regarding file structure and access are passed to H5Fcreate and H5Fopen through property list objects. Property lists provide a portable and extensible method of modifying file properties via simple API functions. There are two kinds of file-related property lists:

•        File creation property lists

•        File access property lists

In the following sub-sections, we discuss only one file creation property, userblock size, in detail as a model for the user. Other file creation and file access properties are mentioned and defined briefly, but the model is not expanded for each; complete syntax, parameter, and usage information for every prop­erty list function is provided in the "H5P: Property List Interface" section of the HDF5 Reference Manual. For more information, see "Properties and Property Lists in HDF5."

3.9.1. Creating a Property List

If you do not wish to rely on the default file creation and access properties, you must first create a prop­erty list with H5Pcreate.

hid_t H5Pcreate (hid_t cls_id)

type is the type of property list being created. In this case, the appropriate values are H5P_FILE_CRE­ATE for a file creation property list and H5P_FILE_ACCESS for a file access property list.

Thus, the following calls create a file creation property list and a file access property list with identifiers fcpl_id and fapl_id, respectively:

fcpl_id = H5Pcreate (H5P_FILE_CREATE)

fapl_id = H5Pcreate (H5P_FILE_ACCESS)

Once the property lists have been created, the properties themselves can be modified via the functions described in the following sub-sections.

3.9.2. File Creation Properties

File creation property lists control the file metadata, which is maintained in the superblock of the file. These properties are used only when a file is first created.

Userblock Size

herr_t H5Pset_userblock (hid_t plist, hsize_t size)

herr_t H5Pget_userblock (hid_t plist, hsize_t *size)

The userblock is a fixed-length block of data located at the beginning of the file and is ignored by the HDF5 Library. This block is specifically set aside for any data or information that developers determine to be use­ful to their applications but that will not be used by the HDF5 Library. The size of the userblock is defined in bytes and may be set to any power of two with a minimum size of 512 bytes. In other words, userblocks might be 512, 1024, or 2048 bytes in size.

This property is set with H5Pset_userblock and queried via H5Pget_userblock. For example, if an application needed a 4K userblock, then the following function call could be used:

status = H5Pset_userblock(fcpl_id, 4096)

The property list could later be queried with

status = H5Pget_userblock(fcpl_id, size)

and the value 4096 would be returned in the parameter size.

Other properties, described below, are set and queried in exactly the same manner. Syntax and usage are detailed in the "H5P: Property List Interface" section of the HDF5 Reference Manual.

Offset and Length Sizes

This property specifies the number of bytes used to store the offset and length of objects in the HDF5 file. Values of 2, 4, and 8 bytes are currently supported to accommodate 16-bit, 32-bit, and 64-bit file address spaces.

These properties are set and queried via H5Pset_sizes and H5Pget_sizes.

Symbol Table Parameters

The size of symbol table B-trees can be controlled by setting the 1/2-rank and 1/2-node size parameters of the B-tree.

These properties are set and queried via H5Pset_sym_k and H5Pget_sym_k.

Indexed Storage Parameters

The size of indexed storage B-trees can be controlled by setting the 1/2-rank and 1/2-node size parameters of the B-tree.

These properties are set and queried via H5Pset_istore_k and H5Pget_istore_k.

Version Information

Various objects in an HDF5 file may over time appear in different versions. The HDF5 Library keeps track of the version of each object in the file.

Version information is retrieved via H5Pget_version.

3.9.3. File Access Properties

This section discusses file access properties that are not related to the low-level file drivers. File drivers are discussed separately later in this chapter. For more information, see "Alternate File Storage Layouts and Low-level File Drivers."

File access property lists control various aspects of file I/O and structure.

Data Alignment

Sometimes file access is faster if certain data elements are aligned in a specific manner. This can be con­trolled by setting alignment properties via the H5Pset_alignment function. There are two values involved:

•        A threshold value

•        An alignment interval

Any allocation request at least as large as the threshold will be aligned on an address that is a multiple of the alignment interval.

Metadata Block Allocation Size

Metadata typically exists as very small chunks of data; storing metadata elements in a file without block­ing them can result in hundreds or thousands of very small data elements in the file. This can result in a highly fragmented file and seriously impede I/O. By blocking metadata elements, these small elements can be grouped in larger sets, thus alleviating both problems.

H5Pset_meta_block_size sets the minimum size in bytes of metadata block allocations. H5Pget_meta_block_size retrieves the current minimum metadata block allocation size.

Metadata Cache

Metadata and raw data I/O speed are often governed by the size and frequency of disk reads and writes. In many cases, the speed can be substantially improved by the use of an appropriate cache.

H5Pset_cache sets the minimum cache size for both metadata and raw data and a preemption value for raw data chunks. H5Pget_cache retrieves the current values.

Data Sieve Buffer Size

Data sieve buffering is used by certain file drivers to speed data I/O and is most commonly when working with dataset hyperslabs. For example, using a buffer large enough to hold several pieces of a dataset as it is read in for hyperslab selections will boost performance noticeably.

H5Pset_sieve_buf_size sets the maximum size in bytes of the data sieve buffer. H5Pget_sieve_buf_size retrieves the current maximum size of the data sieve buffer.

Garbage Collection References

Dataset region references and other reference types use space in an HDF5 file’s global heap. If garbage collection is on (1) and the user passes in an uninitialized value in a reference structure, the heap might become corrupted. When garbage collection is off (0), however, and the user re-uses a reference, the pre­vious heap block will be orphaned and not returned to the free heap space. When garbage collection is on, the user must initialize the reference structures to 0 or risk heap corruption.

H5Pset_gc_references sets the garbage collecting references flag.

3.10. Alternate File Storage Layouts and Low-level File Drivers

The concept of an HDF5 file is actually rather abstract: the address space for what is normally thought of as an HDF5 file might correspond to any of the following:

•        Single file on standard file system

•        Multiple files on standard file system

•        Multiple files on parallel file system

•        Block of memory within application’s memory space

•        More abstract situations such as virtual files

This HDF5 address space is generally referred to as an HDF5 file regardless of its organization at the stor­age level.

HDF5 employs an extremely flexible mechanism called the virtual file layer, or VFL, for file I/O. A full understanding of the VFL is only necessary if you plan to write your own drivers (see "Virtual File Layer" and "List of VFL Functions" in the HDF5 Technical Notes). For our purposes here, it is sufficient to know that the low-level drivers used for file I/O reside in the VFL, as illustrated in the following figure. Note that H5FD_STREAM is not available with 1.8.x and later versions of the library.



Figure 3-2. I/O path from application to VFL and low-level drivers to storage

	
[image: VFL_Drivers.jpg]

 

 








 

As mentioned above, HDF5 applications access HDF5 files through various low-level file drivers. The default driver for that layout is the POSIX driver (also known as the SEC2 driver), H5FD_SEC2. Alternative layouts and drivers are designed to suit the needs of a variety of systems, environments, and applications. The drivers are listed in the table below.



Table 3-2. Supported file drivers

 	
Driver Name


 	
Driver

Identifier


 	
Description


 	
Related API





	
POSIX


	
H5FD_SEC2


	
This driver uses POSIX file-system functions like read and write to perform I/O to a single, permanent file on local disk with no system buffering. This driver is POSIX-compliant and is the default file driver for all systems.


	
H5Pset_fapl_sec2





	
Direct


	
H5FD_DIRECT


	
This is the H5FD_SEC2 driver except data is written to or read from the file synchronously without being cached by the system.


	
H5Pset_fapl_direct





	
Log


	
H5FD_LOG


	
This is the H5FD_SEC2 driver with logging capabilities.


	
H5Pset_fapl_log





	
Windows


	
H5FD_WINDOWS


	
This driver was modified in HDF5-1.8.8 to be a wrapper of the POSIX driver, H5FD_SEC2. This change should not affect user applications.


	
H5Pset_fapl_windows





	
STDIO


	
H5FD_STDIO


	
This driver uses func­tions from the standard C stdio.h to perform I/O to a single, perma­nent file on local disk with additional system buffering.


	
H5Pset_fapl_stdio





	
Memory


	
H5FD_CORE


	
With this driver, an application can work with a file in memory for faster reads and writes. File contents are kept in memory until the file is closed. At clos­ing, the memory version of the file can be writ­ten back to disk or abandoned.


	
H5Pset_fapl_core





	
Family


	
H5FD_FAMILY


	
With this driver, the HDF5 file’s address space is partitioned into pieces and sent to sepa­rate storage files using an underlying driver of the user’s choice. This driver is for systems that do not support files larger than 2 gigabytes.


	
H5Pset_fapl_family





	
Multi


	
H5FD_MULTI


	
With this driver, data can be stored in multi­ple files according to the type of the data. I/O might work better if data is stored in sepa­rate files based on the type of data. The Split driver is a special case of this driver.


	
H5Pset_fapl_multi





	
Split


	
H5FD_SPLIT


	
This file driver splits a file into two parts. One part stores metadata, and the other part stores raw data. This splitting a file into two parts is a limited case of the Multi driver.


	
H5Pset_fapl_split





	
Parallel


	
H5FD_MPIO


	
This is the standard HDF5 file driver for par­allel file systems. This driver uses the MPI standard for both com­munication and file I/O.


	
H5Pset_fapl_mpio





	
Parallel POSIX


	
H5FD_MPIPOSIX


	
This driver is no longer available.


	
 





	
Stream


	
H5FD_STREAM


	
This driver is no longer available.


	
 








 

For more information, see the HDF5 Reference Manual entries for the function calls shown in the column on the right in the table above.

Note that the low-level file drivers manage alternative file storage layouts. Dataset storage layouts (chunk­ing, compression, and external dataset storage) are managed independently of file storage layouts.

If an application requires a special-purpose low-level driver, the VFL provides a public API for creating one. For more information on how to create a driver, see “Virtual File Layer” and “List of VFL Functions” in the HDF5 Technical Notes.

3.10.1. Identifying the Previously-used File Driver

When creating a new HDF5 file, no history exists, so the file driver must be specified if it is to be other than the default.

When opening existing files, however, the application may need to determine which low-level driver was used to create the file. The function H5Pget_driver is used for this purpose. See the example below.



Code Example 3-5. Identifying a driver

	
hid_t H5Pget_driver (hid_t fapl_id)








 

H5Pget_driver returns a constant identifying the low-level driver for the access property list fapl_id. For example, if the file was created with the POSIX (aka SEC2) driver, H5Pget_driver returns H5F­D_SEC2.

If the application opens an HDF5 file without both determining the driver used to create the file and set­ting up the use of that driver, the HDF5 Library will examine the superblock and the driver definition block to identify the driver. See the HDF5 File Format Specification for detailed descriptions of the superblock and the driver definition block.

3.10.2. The POSIX (aka SEC2) Driver

The POSIX driver, H5FD_SEC2, uses functions from section 2 of the POSIX manual to access unbuffered files stored on a local file system. This driver is also known as the SEC2 driver. The HDF5 Library buffers metadata regardless of the low-level driver, but using this driver prevents data from being buffered again by the lowest layers of the library.

The function H5Pset_fapl_sec2 sets the file access properties to use the POSIX driver. See the example below.



Code Example 3-6. Using the POSIX, aka SEC2, driver

	
herr_t H5Pset_fapl_sec2 (hid_t fapl_id)








 

Any previously-defined driver properties are erased from the property list.

Additional parameters may be added to this function in the future. Since there are no additional variable settings associated with the POSIX driver, there is no H5Pget_fapl_sec2 function.

3.10.3. The Direct Driver

The Direct driver, H5FD_DIRECT, functions like the POSIX driver except that data is written to or read from the file synchronously without being cached by the system.

The functions H5Pset_fapl_direct and H5Pget_fapl_direct are used to manage file access prop­erties. See the example below.



Code Example 3-7. Using the Direct driver

	
herr_t H5Pset_fapl_direct( hid_t fapl_id, size_t alignment,

size_t block_size, size_t cbuf_size )

 

herr_t H5Pget_fapl_direct( hid_t fapl_id, size_t *alignment,

size_t *block_size, size_t *cbuf_size )








 

H5Pset_fapl_direct sets the file access properties to use the Direct driver; any previously defined driver properties are erased from the property list. H5Pget_fapl_direct retrieves the file access prop­erties used with the Direct driver. fapl_id is the file access property list identifier. alignment is the memory alignment boundary. block_size is the file system block size. cbuf_size is the copy buffer size.

Additional parameters may be added to this function in the future.

3.10.4. The Log Driver

The Log driver, H5FD_LOG, is designed for situations where it is necessary to log file access activity.

The function H5Pset_fapl_log is used to manage logging properties. See the example below.



Code Example 3-8. Logging file access

	
herr_t H5Pset_fapl_log (hid_t fapl_id, const char *logfile,

unsigned int flags, size_t buf_size)








 

H5Pset_fapl_log sets the file access property list to use the Log driver. File access characteristics are identical to access via the POSIX driver. Any previously defined driver properties are erased from the prop­erty list.

Log records are written to the file logfile.

The logging levels set with the verbosity parameter are shown in the table below.



Table 3-3. Logging levels

 	
Level


 	
Comments





	
0


	
Performs no logging.





	
1


	
Records where writes and reads occur in the file.





	
2


	
Records where writes and reads occur in the file and what kind of data is writ­ten at each location. This includes raw data or any of several types of metadata (object headers, superblock, B-tree data, local headers, or global headers).








 

There is no H5Pget_fapl_log function.

Additional parameters may be added to this function in the future.

3.10.5. The Windows Driver

The Windows driver, H5FD_WINDOWS, was modified in HDF5-1.8.8 to be a wrapper of the POSIX driver, H5FD_SEC2. In other words, if the Windows drivers is used, any file I/O will instead use the functionality of the POSIX driver. This change should be transparent to all user applications. The Windows driver used to be the default driver for Windows systems. The POSIX driver is now the default.

The function H5Pset_fapl_windows sets the file access properties to use the Windows driver. See the example below.



Code Example 3-9. Using the Windows driver

	
herr_t H5Pset_fapl_windows (hid_t fapl_id)








 

Any previously-defined driver properties are erased from the property list.

Additional parameters may be added to this function in the future. Since there are no additional variable settings associated with the POSIX driver, there is no H5Pget_fapl_windows function.

3.10.6. The STDIO Driver

The STDIO driver, H5FD_STDIO, accesses permanent files in a local file system like the POSIX driver does. The STDIO driver also has an additional layer of buffering beneath the HDF5 Library.

The function H5Pset_fapl_stdio sets the file access properties to use the STDIO driver. See the exam­ple below.



Code Example 3-10. Using the STDIO driver

	
herr_t H5Pset_fapl_stdio (hid_t fapl_id)








 

Any previously defined driver properties are erased from the property list.

Additional parameters may be added to this function in the future. Since there are no additional variable settings associated with the STDIO driver, there is no H5Pget_fapl_stdio function.

3.10.7. The Memory (aka Core) Driver

There are several situations in which it is reasonable, sometimes even required, to maintain a file entirely in system memory. You might want to do so if, for example, either of the following conditions apply:

•        Performance requirements are so stringent that disk latency is a limiting factor

•        You are working with small, temporary files that will not be retained and, thus, need not be writ­ten to storage media

The Memory driver, H5FD_CORE, provides a mechanism for creating and managing such in-memory files. The functions H5Pset_fapl_core and H5Pget_fapl_core manage file access properties. See the example below.



Code Example 3-11. Managing file access for in-memory files

	
herr_t H5Pset_fapl_core (hid_t access_properties,

size_t block_size, hbool_t backing_store)

herr_t H5Pget_fapl_core (hid_t access_properties,

size_t *block_size), hbool_t *backing_store)








 

H5Pset_fapl_core sets the file access property list to use the Memory driver; any previously defined driver properties are erased from the property list.

Memory for the file will always be allocated in units of the specified block_size.

The backing_store Boolean flag is set when the in-memory file is created. backing_store indicates whether to write the file contents to disk when the file is closed. If backing_store is set to 1 (TRUE), the file contents are flushed to a file with the same name as the in-memory file when the file is closed or access to the file is terminated in memory. If backing_store is set to 0 (FALSE), the file is not saved.

The application is allowed to open an existing file with the H5FD_CORE driver. While using H5Fopen to open an existing file, if backing_store is set to 1 and the flag for H5Fopen is set to H5F_ACC_RDWR, changes to the file contents will be saved to the file when the file is closed. If backing_store is set to 0 and the flag for H5Fopen is set to H5F_ACC_RDWR, changes to the file contents will be lost when the file is closed. If the flag for H5Fopen is set to H5F_ACC_RDONLY, no change to the file will be allowed either in memory or on file.

If the file access property list is set to use the Memory driver, H5Pget_fapl_core will return block_­size and backing_store with the relevant file access property settings.

Note the following important points regarding in-memory files:

•        Local temporary files are created and accessed directly from memory without ever being written to disk

•        Total file size must not exceed the available virtual memory

•        Only one HDF5 file identifier can be opened for the file, the identifier returned by H5Fcreate or H5Fopen

•        The changes to the file will be discarded when access is terminated unless backing_store is set to 1

Additional parameters may be added to these functions in the future.

See the "HDF5 File Image Operations" section for information on more advanced usage of the Memory file driver, and see the "Modified Region Writes" section for information on how to set write operations so that only modified regions are written to storage.

3.10.8. The Family Driver

HDF5 files can become quite large, and this can create problems on systems that do not support files larger than 2 gigabytes. The HDF5 file family mechanism is designed to solve the problems this creates by splitting the HDF5 file address space across several smaller files. This structure does not affect how meta­data and raw data are stored: they are mixed in the address space just as they would be in a single, contig­uous file.

HDF5 applications access a family of files via the Family driver, H5FD_FAMILY. The functions H5Pset_­fapl_family and H5Pget_fapl_family are used to manage file family properties. See the example below.



Code Example 3-12. Managing file family properties

	
herr_t H5Pset_fapl_family (hid_t fapl_id,

hsize_t memb_size, hid_t member_properties)

 

herr_t H5Pget_fapl_family (hid_t fapl_id,

hsize_t *memb_size, hid_t *member_properties)








 

Each member of the family is the same logical size though the size and disk storage reported by file system listing tools may be substantially smaller. Examples of file system listing tools are ’ls -l’ on a Unix sys­tem or the detailed folder listing on an Apple Macintosh or Microsoft Windows system. The name passed to H5Fcreate or H5Fopen should include a printf(3c)-style integer format specifier which will be replaced with the family member number. The first family member is numbered zero (0).

H5Pset_fapl_family sets the access properties to use the Family driver; any previously defined driver properties are erased from the property list. member_properties will serve as the file access property list for each member of the file family. memb_size specifies the logical size, in bytes, of each family mem­ber. memb_size is used only when creating a new file or truncating an existing file; otherwise the mem­ber size is determined by the size of the first member of the family being opened. Note: If the size of the off_t type is four bytes, the maximum family member size is usually 2^31-1 because the byte at offset 2,147,483,647 is generally inaccessible.

H5Pget_fapl_family is used to retrieve file family properties. If the file access property list is set to use the Family driver, member_properties will be returned with a pointer to a copy of the appropriate member access property list. If memb_size is non-null, it will contain the logical size, in bytes, of family members.

Additional parameters may be added to these functions in the future.

3.10.8.1. Unix Tools and an HDF5 Utility

It occasionally becomes necessary to repartition a file family. A command-line utility for this purpose, h5repart, is distributed with the HDF5 Library.

h5repart [-v] [-b block_size[suffix]] [-m member_size[suffix]] source destination

h5repart repartitions an HDF5 file by copying the source file or file family to the destination file or file family, preserving holes in the underlying UNIX files. Families are used for the source and/or destination if the name includes a printf-style integer format such as %d. The -v switch prints input and output file names on the standard error stream for progress monitoring, -b sets the I/O block size (the default is 1KB), and -m sets the output member size if the destination is a family name (the default is 1GB). block_size and member_size may be suffixed with the letters g, m, or k for GB, MB, or KB respectively.

The h5repart utility is described on the Tools page of the HDF5 Reference Manual.

An existing HDF5 file can be split into a family of files by running the file through split(1) on a UNIX sys­tem and numbering the output files. However, the HDF5 Library is lazy about extending the size of family members, so a valid file cannot generally be created by concatenation of the family members.

Splitting the file and rejoining the segments by concatenation (split(1) and cat(1) on UNIX systems) does not generate files with holes; holes are preserved only through the use of h5repart.

3.10.9. The Multi Driver

In some circumstances, it is useful to separate metadata from raw data and some types of metadata from other types of metadata. Situations that would benefit from use of the Multi driver include the following:

•        In networked situations where the small metadata files can be kept on local disks but larger raw data files must be stored on remote media

•        In cases where the raw data is extremely large

•         In situations requiring frequent access to metadata held in RAM while the raw data can be effi­ciently held on disk

In either case, access to the metadata is substantially easier with the smaller, and possibly more localized, metadata files. This often results in improved application performance.

The Multi driver, H5FD_MULTI, provides a mechanism for segregating raw data and different types of metadata into multiple files. The functions H5Pset_fapl_multi and H5Pget_fapl_multi are used to manage access properties for these multiple files. See the example below.



Code Example 3-13. Managing access properties for multiple files

	
herr_t H5Pset_fapl_multi (hid_t fapl_id,

const H5FD_mem_t *memb_map,

const hid_t *memb_fapl,

const char * const *memb_name,

const haddr_t *memb_addr,

hbool_t relax)

herr_t H5Pget_fapl_multi (hid_t fapl_id,

const H5FD_mem_t *memb_map,

const hid_t *memb_fapl,

const char **memb_name,

const haddr_t *memb_addr,

hbool_t *relax)








 

H5Pset_fapl_multi sets the file access properties to use the Multi driver; any previously defined driver properties are erased from the property list. With the Multi driver invoked, the application will provide a base name to H5Fopen or H5Fcreate. The files will be named by that base name as modified by the rule indicated in memb_name. File access will be governed by the file access property list memb_properties.

See H5Pset_fapl_multi and H5Pget_fapl_multi in the HDF5 Reference Manual for descriptions of these functions and their usage.

Additional parameters may be added to these functions in the future.

3.10.10. The Split Driver

The Split driver, H5FD_SPLIT, is a limited case of the Multi driver where only two files are created. One file holds metadata, and the other file holds raw data.

The function H5Pset_fapl_split is used to manage Split file access properties. See the example below.



Code Example 3-14. Managing access properties for split files

	
herr_t H5Pset_fapl_split (hid_t access_properties,

const char *meta_extension, hid_t meta_properties,

const char *raw_extension, hid_t raw_properties








 

H5Pset_fapl_split sets the file access properties to use the Split driver; any previously defined driver properties are erased from the property list.

With the Split driver invoked, the application will provide a base file name such as file_name to H5F­create or H5Fopen. The metadata and raw data files in storage will then be named file_name.meta_extension and file_name.raw_extension, respectively. For example, if meta_extension is defined as .meta and raw_extension is defined as .raw, the final filenames will be file_name.meta and file_name.raw.

Each file can have its own file access property list. This allows the creative use of other low-level file driv­ers. For instance, the metadata file can be held in RAM and accessed via the Memory driver while the raw data file is stored on disk and accessed via the POSIX driver. Metadata file access will be governed by the file access property list in meta_properties. Raw data file access will be governed by the file access property list in raw_properties.

Additional parameters may be added to these functions in the future. Since there are no additional vari­able settings associated with the Split driver, there is no H5Pget_fapl_split function.

3.10.11. The Parallel Driver

Parallel environments require a parallel low-level driver. HDF5’s default driver for parallel systems is called the Parallel driver, H5FD_MPIO. This driver uses the MPI standard for both communication and file I/O.

The functions H5Pset_fapl_mpio and H5Pget_fapl_mpio are used to manage file access properties for the H5FD_MPIO driver. See the example below.



Code Example 3-15. Managing parallel file access properties

	
herr_t H5Pset_fapl_mpio (hid_t fapl_id, MPI_Comm comm,

MPI_info info)

herr_t H5Pget_fapl_mpio (hid_t fapl_id, MPI_Comm *comm,

MPI_info *info)








 

The file access properties managed by H5Pset_fapl_mpio and retrieved by H5Pget_fapl_mpio are the MPI communicator, comm, and the MPI info object, info. comm and info are used for file open. info is an information object much like an HDF5 property list. Both are defined in MPI_FILE_OPEN of MPI-2.

The communicator and the info object are saved in the file access property list fapl_id. fapl_id can then be passed to MPI_FILE_OPEN to create and/or open the file.

H5Pset_fapl_mpio and H5Pget_fapl_mpio are available only in the parallel HDF5 Library and are not collective functions. The Parallel driver is available only in the parallel HDF5 Library.

Additional parameters may be added to these functions in the future.

3.11. Code Examples for Opening and Closing Files

3.11.1. Example Using the H5F_ACC_TRUNC Flag

The following example uses the H5F_ACC_TRUNC flag when it creates a new file. The default file creation and file access properties are also used. Using H5F_ACC_TRUNC means the function will look for an exist­ing file with the name specified by the function. In this case, that name is FILE. If the function does not find an existing file, it will create one. If it does find an existing file, it will empty the file in preparation for a new set of data. The identifier for the "new" file will be passed back to the application program. For more information, see "File Access Modes."



Code Example 3-16. Creating a file with default creation and access properties

	
hid_t file; /* identifier */

 

/* Create a new file using H5F_ACC_TRUNC access, default

* file creation properties, and default file access

*/ properties.

file = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT,

H5P_DEFAULT);

 

/* Close the file. */

status = H5Fclose(file);








 

3.11.2. Example with the File Creation Property List

The example below shows how to create a file with 64-bit object offsets and lengths.



Code Example 3-17. Creating a file with 64-bit offsets

	
hid_t create_plist;

hid_t file_id;

create_plist = H5Pcreate(H5P_FILE_CREATE);

H5Pset_sizes(create_plist, 8, 8);

file_id = H5Fcreate(“test.h5”, H5F_ACC_TRUNC,

create_plist, H5P_DEFAULT);

.

.

.

H5Fclose(file_id);








 

3.11.3. Example with the File Access Property List

This example shows how to open an existing file for independent datasets access by MPI parallel I/O:



Code Example 3-18. Opening an existing file for parallel I/O

	
hid_t access_plist;

hid_t file_id;

access_plist = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpi(access_plist, MPI_COMM_WORLD,

MPI_INFO_NULL);

 

/* H5Fopen must be called collectively */

file_id = H5Fopen(“test.h5”, H5F_ACC_RDWR, access_plist);

.

.

.

/* H5Fclose must be called collectively */

H5Fclose(file_id);








 

3.12. Working with Multiple HDF5 Files

Multiple HDF5 files can be associated so that the files can be worked with as though all the information is in a single HDF5 file. A temporary association can be set up by means of the H5Fmount function. A perma­nent association can be set up by means of the external link function H5Lcreate_external.

The purpose of this section is to describe what happens when the H5Fmount function is used to mount one file on another.

When a file is mounted on another, the mounted file is mounted at a group, and the root group of the mounted file takes the place of that group until the mounted file is unmounted or until the files are closed.

The figure below shows two files before one is mounted on the other. File1 has two groups and three datasets. The group that is the target of the A link has links, Z and Y, to two of the datasets. The group that is the target of the B link has a link, W, to the other dataset. File2 has three groups and three datasets. The groups in File2 are the targets of the AA, BB, and CC links. The datasets in File2 are the targets of the ZZ, YY, and WW links.



Figure 3-3. Two separate files

	
[image: Files_fig3.JPG]

 

 








 

The figure below shows the two files after File2 has been mounted File1 at the group that is the target of the B link.



Figure 3-4. File2 mounted on File1

	
[image: Files_fig4.JPG]

 

 








Note: In the figure above, the dataset that is the target of the W link is not shown. That dataset is masked by the mounted file.

If a file is mounted on a group that has members, those members are hidden until the mounted file is unmounted. There are two ways around this if you need to work with a group member. One is to mount the file on an empty group. Another is to open the group member before you mount the file. Opening the group member will return an identifier that you can use to locate the group member.

The example below shows how H5Fmount might be used to mount File2 onto File1.



Code Example 3-19. Using H5Fmount

	
status = H5Fmount(loc_id, "/B", child_id, plist_id)








Note: In the code example above, loc_id is the file identifier for File1, /B is the link path to the group where File2 is mounted, child_id is the file identifier for File2, and plist_id is a property list identifier.

For more information, see "HDF5 Groups." See the entries for H5Fmount, H5Funmount, and H5Lcreate_external in the HDF5 Reference Manual.

 




4. HDF5 Groups

As suggested by the name Hierarchical Data Format, an HDF5 file is hierarchically structured. The HDF5 group and link objects implement this hierarchy.

In the simple and most common case, the file structure is a tree structure; in the general case, the file structure may be a directed graph with a designated entry point. The tree structure is very similar to the file system structures employed on UNIX systems, directories and files, and on Apple Macintosh and Mic­rosoft Windows systems, folders and files. HDF5 groups are analogous to the directories and folders; HDF5 datasets are analogous to the files.

The one very important difference between the HDF5 file structure and the above-mentioned file system analogs is that HDF5 groups are linked as a directed graph, allowing circular references; the file systems are strictly hierarchical, allowing no circular references. The figures below illustrate the range of possibili­ties.

In the first figure below, the group structure is strictly hierarchical, identical to the file system analogs.

In the next two figures below, the structure takes advantage of the directed graph’s allowance of circular references. In the second figure, GroupA is not only a member of the root group, /, but a member of GroupC. Since Group C is a member of Group B and Group B is a member of Group A, Dataset1 can be accessed by means of the circular reference /Group A/Group B/Group C/Group A/Dataset1. The third figure below illustrates an extreme case in which GroupB is a member of itself, enabling a reference to a member dataset such as /Group A/Group B/Group B/Group B/Dataset2.



Figure 4-1. A file with a strictly hierarchical group structure

	
[image: Group_fig1.jpg]

 

 










Figure 4-2. A file with a circular reference

	
[image: Group_fig2_8.jpg]

 

 










Figure 4-3. A file with one group as a member of itself

	
[image: Group_fig3.jpg]

 

 








 

As becomes apparent upon reflection, directed graph structures can become quite complex; caution is advised!

The balance of this chapter discusses the following topics:

•        The HDF5 group object (or a group) and its structure in more detail

•        HDF5 link objects (or links)

•        The programming model for working with groups and links

•        HDF5 functions provided for working with groups, group members, and links

•        Retrieving information about objects in a group

•        Discovery of the structure of an HDF5 file and the contained objects

•        Examples of file structures

4.1. Description of the Group Object

4.1.1. The Group Object

Abstractly, an HDF5 group contains zero or more objects and every object must be a member of at least one group. The root group, the sole exception, may not belong to any group.



Figure 4-4. Abstract model of the HDF5 group object

	
[image: groups_fig4.JPG]

 

 








 

Group membership is actually implemented via link objects. See the figure above. A link object is owned by a group and points to a named object. Each link has a name, and each link points to exactly one object. Each named object has at least one and possibly many links to it.

There are three classes of named objects: group, dataset, and committed datatype (formerly called named datatype). See the figure below. Each of these objects is the member of at least one group, which means there is at least one link to it.



Figure 4-5. Classes of named objects

	
[image: groups_fig5.JPG]

 

 








 

The primary operations on a group are to add and remove members and to discover member objects. These abstract operations, as listed in the figure below, are implemented in the H5G APIs. For more information, see "Group Function Summaries."

To add and delete members of a group, links from the group to existing objects in the file are created and deleted with the link and unlink operations. When a new named object is created, the HDF5 Library executes the link operation in the background immediately after creating the object (in other words, a new object is added as a member of the group in which it is created without further user intervention).

Given the name of an object, the get_object_info method retrieves a description of the object, including the number of references to it. The iterate method iterates through the members of the group, returning the name and type of each object.



Figure 4-6. The group object

	
[image: Groups_fig6.JPG]

 

 








 

Every HDF5 file has a single root group, with the name /. The root group is identical to any other HDF5 group, except:

•        The root group is automatically created when the HDF5 file is created (H5Fcreate).

•        The root group has no parent, but by convention has a reference count of 1.

•        The root group cannot be deleted (in other words, unlinked)!

4.1.2. The Hierarchy of Data Objects

An HDF5 file is organized as a rooted, directed graph using HDF5 group objects. The named data objects are the nodes of the graph, and the links are the directed arcs. Each arc of the graph has a name, with the special name / reserved for the root group. New objects are created and then inserted into the graph with a link operation that is automatically executed by the library; existing objects are inserted into the graph with a link operation explicitly called by the user, which creates a named link from a group to the object.

An object can be the target of more than one link.

The names on the links must be unique within each group, but there may be many links with the same name in different groups. These are unambiguous, because some ancestor must have a different name, or else they are the same object. The graph is navigated with path names, analogous to Unix file systems. For more information, see "HDF5 Path Names."An object can be opened with a full path starting at the root group, or with a relative path and a starting point. That starting point is always a group, though it may be the current working group, another specified group, or the root group of the file. Note that all paths are relative to a single HDF5 file. In this sense, an HDF5 file is analogous to a single UNIX file system.1 

It is important to note that, just like the UNIX file system, HDF5 objects do not have names, the names are associated with paths. An object has an object identifier that is unique within the file, but a single object may have many names because there may be many paths to the same object. An object can be renamed, or moved to another group, by adding and deleting links. In this case, the object itself never moves. For that matter, membership in a group has no implication

for the physical location of the stored object.

Deleting a link to an object does not necessarily delete the object. The object remains available as long as there is at least one link to it. After all links to an object are deleted, it can no longer be opened, and the storage may be reclaimed.

It is also important to realize that the linking mechanism can be used to construct very complex graphs of objects. For example, it is possible for object to be shared between several groups and even to have more than one name in the same group. It is also possible for a group to be a member of itself, or to create other cycles in the graph, such as in the case where a child group is linked to one of its ancestors.

HDF5 also has soft links similar to UNIX soft links. A soft link is an object that has a name and a path name for the target object. The soft link can be followed to open the target of the link just like a regular or hard link. The differences are that the hard link cannot be created if the target object does not exist and it always points to the same object. A soft link can be created with any path name, whether or not the object exists; it may or may not, therefore, be possible to follow a soft link. Furthermore, a soft link’s target object may be changed.

4.1.3. HDF5 Path Names

The structure of the HDF5 file constitutes the name space for the objects in the file. A path name is a string of components separated by slashes (/). Each component is the name of a hard or soft link which points to an object in the file. The slash not only separates the components, but indicates their hierarchical relation­ship; the component indicated by the link name following a slash is a always a member of the component indicated by the link name preceding that slash.

The first component in the path name may be any of the following:

•        The special character dot (., a period), indicating the current group

•        The special character slash (/), indicating the root group

•        Any member of the current group

Component link names may be any string of ASCII characters not containing a slash or a dot (/ and ., which are reserved as noted above). However, users are advised to avoid the use of punctuation and non-printing characters, as they may create problems for other software. The figure below provides a BNF grammar for HDF5 path names.



Figure 4-7. A BNF grammar for HDF5 path names

	
PathName ::= AbsolutePathName | RelativePathName

Separator ::= "/" ["/"]*

AbsolutePathName ::= Separator [ RelativePathName ]

RelativePathName ::= Component [ Separator RelativePathName ]*

Component ::=  "." |  Characters

Characters ::= Character+   -  { "." }

Character ::= {c:  c Î { { legal ASCII characters } - {'/'} }








 

An object can always be addressed by a either a full or absolute path name, starting at the root group, or by a relative path name, starting in a known location such as the current working group. As noted else­where, a given object may have multiple full and relative path names.

Consider, for example, the file illustrated in the figure below. Dataset1 can be identified by either of these absolute path names:

/GroupA/Dataset1

/GroupA/GroupB/GroupC/Dataset1

Since an HDF5 file is a directed graph structure, and is therefore not limited to a strict tree structure, and since this illustrated file includes the sort of circular reference that a directed graph enables, Dataset1 can also be identified by this absolute path name:

/GroupA/GroupB/GroupC/GroupA/Dataset1

Alternatively, if the current working location is GroupB, Dataset1 can be identified by either of these rel­ative path names:

GroupC/Dataset1

GroupC/GroupA/Dataset1

Note that relative path names in HDF5 do not employ the ../ notation, the UNIX notation indicating a parent directory, to indicate a parent group.



Figure 4-8. A file with a circular reference

	
[image: Group_fig2_800001.jpg]

 

 








 

4.1.4. Group Implementations in HDF5

The original HDF5 group implementation provided a single indexed structure for link storage. A new group implementation, in HDF5 Release 1.8.0, enables more efficient compact storage for very small groups, improved link indexing for large groups, and other advanced features.

•        The original indexed format remains the default. Links are stored in a B-tree in the group’s local heap.

•        Groups created in the new compact-or-indexed format, the implementation introduced with Release 1.8.0, can be tuned for performance, switching between the compact and indexed for­mats at thresholds set in the user application.

•        The compact format will conserve file space and processing overhead when working with small groups and is particularly valuable when a group contains no links. Links are stored as a list of messages in the group’s header.

•        The indexed format will yield improved performance when working with large groups. A large group may contain thousands to millions of members. Links are stored in a fractal heap and indexed with an improved B-tree.

•        The new implementation also enables the use of link names consisting of non-ASCII character sets (see H5Pset_char_encoding) and is required for all link types other than hard or soft links; the link types other than hard or soft links are external links and user-defined links (see the H5L APIs).

The original group structure and the newer structures are not directly interoperable. By default, a group will be created in the original indexed format. An existing group can be changed to a compact-or-indexed format if the need arises; there is no capability to change back. As stated above, once in the compact-or-indexed format, a group can switch between compact and indexed as needed.

Groups will be initially created in the compact-or-indexed format only when one or more of the following conditions is met:

•        The low version bound value of the library version bounds property has been set to Release 1.8.0 or later in the file access property list (see H5Pset_libver_bounds). Currently, that would require an H5Pset_libver_bounds call with the low parameter set to H5F_LIBVER_LATEST.

When this property is set for an HDF5 file, all objects in the file will be created using the latest available format; no effort will be made to create a file that can be read by older libraries.

•        The creation order tracking property, H5P_CRT_ORDER_TRACKED, has been set in the group cre­ation property list (see H5Pset_link_creation_order).

An existing group, currently in the original indexed format, will be converted to the compact-or-indexed format upon the occurrence of any of the following events:

•        An external or user-defined link is inserted into the group.

•        A link named with a string composed of non-ASCII characters is inserted into the group.

The compact-or-indexed format offers performance improvements that will be most notable at the extremes (for example, in groups with zero members and in groups with tens of thousands of members). But measurable differences may sometimes appear at a threshold as low as eight group members. Since these performance thresholds and criteria differ from application to application, tunable settings are pro­vided to govern the switch between the compact and indexed formats (see H5Pset_link_phase_change). Optimal thresholds will depend on the application and the operating environment.

Future versions of HDF5 will retain the ability to create, read, write, and manipulate all groups stored in either the original indexed format or the compact-or-indexed format.

4.2. Using h5dump

You can use h5dump, the command-line utility distributed with HDF5, to examine a file for purposes either of determining where to create an object within an HDF5 file or to verify that you have created an object in the intended place.

In the case of the new group created later in this chapter, the following h5dump command will display the contents of FileA.h5:

h5dump FileA.h5

For more information, see "Creating a Group."

Assuming that the discussed objects, GroupA and GroupB are the only objects that exist in FileA.h5, the output will look something like the following:

HDF5 "FileA.h5" {

GROUP "/" {

GROUP GroupA {

GROUP GroupB {

}

}

}

}

h5dump is described on the “HDF5 Tools” page of the HDF5 Reference Manual.

The HDF5 DDL grammar is described in the document DDL in BNF for HDF5.

4.3. Group Function Summaries

Functions that can be used with groups (H5G functions) and property list functions that can used with groups (H5P functions) are listed below. A number of group functions have been deprecated. Most of these have become link (H5L) or object (H5O) functions. These replacement functions are also listed below.



Function Listing 4-1. Group functions (H5G)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Gcreate

h5gcreate_f


	
Creates a new empty group and gives it a name. The C function is a macro: see “API Compatibility Macros in HDF5.”





	
H5Gcreate_anon

h5gcreate_anon_f


	
Creates a new empty group without linking it into the file structure.





	
H5Gopen

h5gopen_f


	
Opens an existing group for modification and returns a group identifier for that group. The C function is a macro: see “API Compatibility Macros in HDF5.”





	
H5Gclose

h5gclose_f


	
Closes the specified group.





	
H5Gget_create_plist

h5gget_create_plist_f


	
Gets a group creation property list identifier.





	
H5Gget_info

h5gget_info_f


	
Retrieves information about a group. Use instead of H5Gget_num_objs.





	
H5Gget_info_by_idx

h5gget_info_by_idx_f


	
Retrieves information about a group accord­ing to the group’s position within an index.





	
H5Gget_info_by_name

h5gget_info_by_name_f


	
Retrieves information about a group.





	
(no C function)

h5gget_obj_info_idx_f


	
Returns name and type of the group member identified by its index. Use with the h5gn_members_f function. h5gget_ob­j_info_idx_f and h5gn_members_f are the Fortran equivalent of the C function H5Literate.





	
(no C function)

h5gn_members_f


	
Returns the number of group members. Use with the h5gget_obj_info_idx_f func­tion.










Function Listing 4-2. Link (H5L) and object (H5O) functions

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Lcreate_hard

h5lcreate_hard_f


	
Creates a hard link to an object. Replaces H5Glink and H5Glink2.





	
H5Lcreate_soft

h5lcreate_soft_f


	
Creates a soft link to an object. Replaces H5Glink and H5Glink2.





	
H5Lcreate_external

h5lcreate_external_f


	
Creates a soft link to an object in a different file. Replaces H5Glink and H5Glink2.





	
H5Lcreate_ud

(no Fortran subroutine)


	
Creates a link of a user-defined type.





	
H5Lget_val

(no Fortran subroutine)


	
Returns the value of a symbolic link. Replaces H5Gget_linkval.





	
H5Literate

h5literate_f


	
Iterates through links in a group. Replaces H5Giterate. See also H5Ovisit and H5Lvisit.





	
H5Literate_by_name

h5literate_by_name_f


	
Iterates through links in a group.





	
H5Lvisit

(no Fortran subroutine)


	
Recursively visits all links starting from a spec­ified group.





	
H5Ovisit

h5ovisit_f


	
Recursively visits all objects accessible from a specified object.





	
H5Lget_info

h5lget_info_f


	
Returns information about a link. Replaces H5Gget_objinfo.





	
H5Oget_info

(no Fortran subroutine)


	
Retrieves the metadata for an object specified by an identifier. Replaces H5Gget_objinfo.





	
H5Lget_name_by_idx

h5lget_name_by_idx_f


	
Retrieves name of the nth link in a group, according to the order within a specified field or index. Replaces H5Gget_ob­jname_by_idx.





	
H5Oget_info_by_idx

(no Fortran subroutine)


	
Retrieves the metadata for an object, identi­fying the object by an index position. Replaces H5Gget_objtype_by_idx.





	
H5Oget_info_by_name

h5oget_info_by_name_f


	
Retrieves the metadata for an object, identi­fying the object by location and relative name.





	
H5Oset_comment

(no Fortran subroutine)


	
Sets the comment for specified object. Replaces H5Gset_comment.





	
H5Oget_comment

(no Fortran subroutine)


	
Gets the comment for specified object. Replaces H5Gget_comment.





	
H5Ldelete

h5ldelete_f


	
Removes a link from a group. Replaces H5Gunlink.





	
H5Lmove

h5lmove_f


	
Renames a link within an HDF5 file. Replaces H5Gmove and H5Gmove2.










Function Listing 4-3. Group creation property list functions (H5P)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Pall_filters_avail

(no Fortran subroutine)


	
Verifies that all required filters are available.





	
H5Pget_filter

h5pget_filter_f


	
Returns information about a filter in a pipe­line. The C function is a macro: see “API Com­patibility Macros in HDF5.”





	
H5Pget_filter_by_id

h5pget_filter_by_id_f


	
Returns information about the specified filter. The C function is a macro: see “API Compati­bility Macros in HDF5.”





	
H5Pget_nfilters

h5pget_nfilters_f


	
Returns the number of filters in the pipeline.





	
H5Pmodify_filter

h5pmodify_filter_f


	
Modifies a filter in the filter pipeline.





	
H5Premove_filter

h5premove_filter_f


	
Deletes one or more filters in the filter pipe­line.





	
H5Pset_deflate

h5pset_deflate_f


	
Sets the deflate (GNU gzip) compression method and compression level.





	
H5Pset_filter

h5pset_filter_f


	
Adds a filter to the filter pipeline.





	
H5Pset_fletcher32

h5pset_fletcher32_f


	
Sets up use of the Fletcher32 checksum filter.





	
H5Pset_fletcher32

h5pset_fletcher32_f


	
Sets up use of the Fletcher32 checksum filter.





	
H5Pset_link_phase_change

h5pset_link_phase_change_f


	
Sets the parameters for conversion between compact and dense groups.





	
H5Pget_link_phase_change

h5pget_link_phase_change_f


	
Queries the settings for conversion between compact and dense groups.





	
H5Pset_est_link_info

h5pset_est_link_info_f


	
Sets estimated number of links and length of link names in a group.





	
H5Pget_est_link_info

h5pget_est_link_info_f


	
Queries data required to estimate required local heap or object header size.





	
H5Pset_nlinks

h5pset_nlinks_f


	
Sets maximum number of soft or user-defined link traversals.





	
H5Pget_nlinks

h5pget_nlinks_f


	
Retrieves the maximum number of link tra­versals.





	
H5Pset_link_creation_order

h5pset_link_creation_order_f


	
Sets creation order tracking and indexing for links in a group.





	
H5Pget_link_creation_order

h5pget_link_creation_order_f


	
Queries whether link creation order is tracked and/or indexed in a group.





	
H5Pset_create_intermediate_group

h5pset_create_inter_group_f


	
Specifies in the property list whether to cre­ate missing intermediate groups.





	
H5Pget_create_intermediate_group

(no Fortran subroutine)


	
Determines whether the property is set to enable creating missing intermediate groups.





	
H5Pset_char_encoding

h5pset_char_encoding_f


	
Sets the character encoding used to encode a string. Use to set ASCII or UTF-8 character encoding for object names.





	
H5Pget_char_encoding

h5pget_char_encoding_f


	
Retrieves the character encoding used to cre­ate a string.










Function Listing 4-4. Other external link functions

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Pset/get_elink_file_cache_size

(no Fortran subroutine)


	
Sets/retrieves the size of the external link open file cache from the specified file access property list.





	
H5Fclear_elink_file_cache

(no Fortran subroutine)


	
Clears the external link open file cache for a file.








 

4.4. Programming Model for Groups

The programming model for working with groups is as follows:

1.      Create a new group or open an existing one.

2.      Perform the desired operations on the group.

•        Create new objects in the group.

•        Insert existing objects as group members.

•        Delete existing members.

•        Open and close member objects.

•        Access information regarding member objects.

•        Iterate across group members.

•        Manipulate links.

3.      Terminate access to the group (Close the group).

4.4.1. Creating a Group

To create a group, use H5Gcreate, specifying the location and the path of the new group. The location is the identifier of the file or the group in a file with respect to which the new group is to be identified. The path is a string that provides wither an absolute path or a relative path to the new group. For more information, see "HDF5 Path Names."A path that begins with a slash (/) is an absolute path indicat­ing that it locates the new group from the root group of the HDF5 file. A path that begins with any other character is a relative path. When the location is a file, a relative path is a path from that file’s root group; when the location is a group, a relative path is a path from that group.

The sample code in the example below creates three groups. The group Data is created in the root direc­tory; two groups are then created in /Data, one with absolute path, the other with a relative path.



Code Example 4-1. Creating three new groups

	
hid_t file;

file = H5Fopen(....);

 

group = H5Gcreate(file, "/Data", H5P_DEFAULT, H5P_DEFAULT,

H5P_DEFAULT);

group_new1 = H5Gcreate(file, "/Data/Data_new1", H5P_DEFAULT,

H5P_DEFAULT, H5P_DEFAULT);

group_new2 = H5Gcreate(group, "Data_new2", H5P_DEFAULT,

H5P_DEFAULT, H5P_DEFAULT);








 

The third H5Gcreate parameter optionally specifies how much file space to reserve to store the names that will appear in this group. If a non-positive value is supplied, a default size is chosen.

4.4.2. Opening a Group and Accessing an Object in that Group

Though it is not always necessary, it is often useful to explicitly open a group when working with objects in that group. Using the file created in the example above, the example below illustrates the use of a previ­ously-acquired file identifier and a path relative to that file to open the group Data.

Any object in a group can be also accessed by its absolute or relative path. To open an object using a rela­tive path, an application must first open the group or file on which that relative path is based. To open an object using an absolute path, the application can use any location identifier in the same file as the target object; the file identifier is commonly used, but object identifier for any object in that file will work. Both of these approaches are illustrated in the example below.

Using the file created in the examples above, the example below provides sample code illustrating the use of both relative and absolute paths to access an HDF5 data object. The first sequence (two function calls) uses a previously-acquired file identifier to open the group Data, and then uses the returned group iden­tifier and a relative path to open the dataset CData. The second approach (one function call) uses the same previously-acquired file identifier and an absolute path to open the same dataset.



Code Example 4-2. Open a dataset with relative and absolute paths

	
group = H5Gopen(file, "Data", H5P_DEFAULT);

dataset1 = H5Dopen(group, "CData", H5P_DEFAULT);

 

dataset2 = H5Dopen(file, "/Data/CData", H5P_DEFAULT);








 

4.4.3. Creating a Dataset in a Specific Group

Any dataset must be created in a particular group. As with groups, a dataset may be created in a particular group by specifying its absolute path or a relative path. The example below illustrates both approaches to creating a dataset in the group /Data.



Code Example 4-3. Create a dataset with absolute and relative paths

	
dataspace = H5Screate_simple(RANK, dims, NULL);

dataset1 = H5Dcreate(file, "/Data/CData", H5T_NATIVE_INT,

dataspace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

 

group = H5Gopen(file, "Data", H5P_DEFAULT);

dataset2 = H5Dcreate(group, "Cdata2", H5T_NATIVE_INT,

dataspace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);








 

4.4.4. Closing a Group

To ensure the integrity of HDF5 objects and to release system resources, an application should always call the appropriate close function when it is through working with an HDF5 object. In the case of groups, H5Gclose ends access to the group and releases any resources the HDF5 Library has maintained in sup­port of that access, including the group identifier.

As illustrated in the example below, all that is required for an H5Gclose call is the group identifier acquired when the group was opened; there are no relative versus absolute path considerations.



Code Example 4-4. Close a group

	
herr_t status;

status = H5Gclose(group);








 

A non-negative return value indicates that the group was successfully closed and the resources released; a negative return value indicates that the attempt to close the group or release resources failed.

4.4.5. Creating Links

As previously mentioned, every object is created in a specific group. Once created, an object can be made a member of additional groups by means of links created with one of the H5Lcreate_* functions.

A link is, in effect, a path by which the target object can be accessed; it therefore has a name which func­tions as a single path component. A link can be removed with an H5Ldelete call, effectively removing the target object from the group that contained the link (assuming, of course, that the removed link was the only link to the target object in the group).

Hard Links

There are two kinds of links, hard links and symbolic links. Hard links are reference counted; symbolic links are not. When an object is created, a hard link is automatically created. An object can be deleted from the file by removing all the hard links to it.

Working with the file from the previous examples, the code in the example below illustrates the creation of a hard link, named Data_link, in the root group, /, to the group Data. Once that link is created, the dataset Cdata can be accessed via either of two absolute paths, /Data/Cdata or /Data_Link/Cdata.



Code Example 4-5. Create a hard link

	
status = H5Lcreate_hard(Data_loc_id, "Data", DataLink_loc_id,

"Data_link", H5P_DEFAULT, H5P_DEFAULT)

 

dataset1 = H5Dopen(file, "/Data_link/CData", H5P_DEFAULT);

dataset2 = H5Dopen(file, "/Data/CData", H5P_DEFAULT);








 

The example below shows example code to delete a link, deleting the hard link Data from the root group. The group /Data and its members are still in the file, but they can no longer be accessed via a path using the component /Data.



Code Example 4-6. Delete a link

	
status = H5Ldelete(Data_loc_id, "Data", H5P_DEFAULT);

 

dataset1 = H5Dopen(file, "/Data_link/CData", H5P_DEFAULT);

/* This call should succeed; all path components

* still exist

*/

dataset2 = H5Dopen(file, "/Data/CData", H5P_DEFAULT);  

/* This call will fail; the path component '/Data'

* has been deleted.

*/








 

When the last hard link to an object is deleted, the object is no longer accessible. H5Ldelete will not pre­vent you from deleting the last link to an object. To see if an object has only one link, use the H5Oget_info function. If the value of the rc (reference count) field in the is greater than 1, then the link can be deleted without making the object inaccessible.

The example below shows H5Oget_info to the group originally called Data.



Code Example 4-7. Finding the number of links to an object

	
status = H5Oget_info(Data_loc_id, object_info);








 

It is possible to delete the last hard link to an object and not make the object inaccessible. Suppose your application opens a dataset, and then deletes the last hard link to the dataset. While the dataset is open, your application still has a connection to the dataset. If your application creates a hard link to the dataset before it closes the dataset, then the dataset will still be accessible.

Symbolic Links

Symbolic links are objects that assign a name in a group to a path. Notably, the target object is determined only when the symbolic link is accessed, and may, in fact, not exist. Symbolic links are not reference counted, so there may be zero, one, or more symbolic links to an object.

The major types of symbolic links are soft links and external links. Soft links are symbolic links within an HDF5 file and are created with the H5Lcreate_soft function. Symbolic links to objects located in exter­nal files, in other words external links, can be created with the H5Lcreate_external function. Symbolic links are removed with the H5Ldelete function.

The example below shows the creating two soft links to the group /Data.



Code Example 4-8. Create a soft link

	
status = H5Lcreate_soft(path_to_target, link_loc_id, "Soft2",

H5P_DEFAULT, H5P_DEFAULT);

status = H5Lcreate_soft(path_to_target, link_loc_id, "Soft3",

H5P_DEFAULT, H5P_DEFAULT);

 

dataset = H5Dopen(file, "/Soft2/CData", H5P_DEFAULT);








 

With the soft links defined in the example above, the dataset CData in the group /Data can now be opened with any of the names /Data/CData, /Soft2/CData, or /Soft3/CData.

In release 1.8.7, a cache was added to hold the names of files accessed via external links. The size of this cache can be changed to help improve performance. For more information, see the entry in the HDF5 Ref­erence Manual for the H5Pset_elink_file_cache_size function call.

Note Regarding Hard Links and Soft Links

Note that an object’s existence in a file is governed by the presence of at least one hard link to that object. If the last hard link to an object is removed, the object is removed from the file and any remaining soft link becomes a dangling link, a link whose target object does not exist.

Moving or Renaming Objects, and a Warning

An object can be renamed by changing the name of a link to it with H5Lmove. This has the same effect as creating a new link with the new name and deleting the link with the old name.

Exercise caution in the use of H5Lmove and H5Ldelete as these functions each include a step that unlinks a pointer to an HDF5 object. If the link that is removed is on the only path leading to an HDF5 object, that object will become permanently inaccessible in the file.

Scenario 1: Removing the Last Link

To avoid removing the last link to an object or otherwise making an object inaccessible, use the H5Oget_info function. Make sure that the value of the reference count field (rc) is greater than 1.

Scenario 2: Moving a Link that Isolates an Object

Consider the following example: assume that the group group2 can only be accessed via the following path, where top_group is a member of the file’s root group:

/top_group/group1/group2/

Using H5Lmove, top_group is renamed to be a member ofgroup2. At this point, since top_group was the only route from the root group to group1, there is no longer a path by which one can access group1, group2, or any member datasets. And since top_group is now a member of group2, top_group itself and any member datasets have thereby also become inaccessible.

Mounting a File

An external link is a permanent connection between two files. A temporary connection can be set up with the H5Fmount function. For more information, see "The HDF5 File."For more information, see the H5Fmount function in the HDF5 Reference Manual.

4.4.6. Discovering Information about Objects

There is often a need to retrieve information about a particular object. The H5Lget_info and H5Oget_info functions fill this niche by returning a description of the object or link in an H5L_info_t or H5O_info_t structure.

4.4.7. Discovering Objects in a Group

To examine all the objects or links in a group, use the H5Literate or H5Ovisit functions to examine the objects, and use the H5Lvisit function to examine the links. H5Literate is useful both with a single group and in an iterative process that examines an entire file or section of a file (such as the contents of a group or the contents of all the groups that are members of that group) and acts on objects as they are encountered. H5Ovisit recursively visits all objects accessible from a specified object. H5Lvisit recur­sively visits all the links starting from a specified group.

4.4.8. Discovering All of the Objects in the File

The structure of an HDF5 file is self-describing, meaning that an application can navigate an HDF5 file to discover and understand all the objects it contains. This is an iterative process wherein the structure is tra­versed as a graph, starting at one node and recursively visiting linked nodes. To explore the entire file, the traversal should start at the root group.

4.5. Examples of File Structures

This section presents several samples of HDF5 file structures.



Figure 4-9. Some file structures

	
[image: groups_fig27_a.JPG]

 


	
[image: groups_fig27_b.JPG]

 





	
a) The file contains three groups: the root group, /group1, and /group2.


	
b) The dataset dset1 (or /group1/dset1) is created in /group1.





	
 


	
 





	
[image: groups_fig27_aa.JPG]

 


	
[image: groups_fig27_bb.JPG]

 





	
c) A link named dset2 to the same dataset is created in /group2.


	
d) The link from /group1 to dset1 is removed. The dataset is still in the file, but can be accessed only as /group2/dset2.








 

The figure above shows examples of the structure of a file with three groups and one dataset. The file in part a contains three groups: the root group and two member groups. In part b, the dataset dset1 has been created in /group1. In part c, a link named dset2 from /group2 to the dataset has been added. Note that there is only one copy of the dataset; there are two links to it and it can be accessed either as /group1/dset1 or as /group2/dset2.

The figure in part d above illustrates that one of the two links to the dataset can be deleted. In this case, the link from /group1 has been removed. The dataset itself has not been deleted; it is still in the file but can only be accessed as /group1/dset2.



Figure 4-10. More sample file structures

	
[image: groups_fig28_a.JPG]

 


	
[image: groups_fig28_b.JPG]

 

 





	
a) dset1 has two names: /group2/dset1 and /group1/GXX/dset1.


	
b) dset1 again has two names: /group1/dset1 and /group1/dset2.





	
 


	
 





	
[image: groups_fig28_c.JPG]

 


	
[image: groups_fig28_d.JPG]

 





	
c) dset1 has three names: /group1/dset1, /group2/dset2, and /group1/GXX/dset2.


	
d) dset1 has an infinite number of available path names.








 

The figure above illustrates loops in an HDF5 file structure. The file in part a contains three groups and a dataset; group2 is a member of the root group and of the root group’s other member group, group1. group2 thus can be accessed by either of two paths: /group2 or /group1/GXX. Similarly, the dataset can be accessed either as /group2/dset1 or as /group1/GXX/dset1.

Part b illustrates a different case: the dataset is a member of a single group but with two links, or names, in that group. In this case, the dataset again has two names, /group1/dset1 and /group1/dset2.

In part c, the dataset dset1 is a member of two groups, one of which can be accessed by either of two names. The dataset thus has three path names: /group1/dset1, /group2/dset2, and /group1/GXX/dset2.

And in part d, two of the groups are members of each other and the dataset is a member of both groups. In this case, there are an infinite number of paths to the dataset because GXX and GYY can be traversed any number of times on the way from the root group, /, to the dataset. This can yield a path name such as /group1/GXX/GYY/GXX/GYY/GXX/dset2.



Figure 4-11. Hard and soft links

	
[image: groups_fig29_a.JPG]

 


	
[image: groups_fig29_b.JPG]

 





	
a) The file contains only hard links.


	
b) A soft link is added from group2 to

/group1/dset1.





	
 


	
 





	
[image: groups_fig29_c.JPG]

 


	
[image: groups_fig29_d.JPG]

 





	
c) A soft link named dset3 is added with a tar­get that does not yet exist.


	
d) The target of the soft link is created or linked.








 

The figure above takes us into the realm of soft links. The original file, in part a, contains only three hard links. In part b, a soft link named dset2 from group2 to /group1/dset1 has been created, making this dataset accessible as /group2/dset2.

In part c, another soft link has been created in group2. But this time the soft link, dset3, points to a tar­get object that does not yet exist. That target object, dset, has been added in part d and is now accessible as either /group2/dset or /group2/dset3.

1.   It could be said that HDF5 extends the organizing concepts of a file system to the internal structure of a single file.




5. HDF5 Datasets

An HDF5 dataset is an object composed of a collection of data elements, or raw data, and metadata that stores a description of the data elements, data layout, and all other information necessary to write, read, and interpret the stored data. From the viewpoint of the application the raw data is stored as a one-dimensional or multi-dimensional array of elements (the raw data), those elements can be any of several numerical or character types, small arrays, or even compound types similar to C structs. The dataset object may have attribute objects. See the figure below.



Figure 5-1. Application view of a dataset

	
[image: Dsets_fig1.JPG]

 

 








 

A dataset object is stored in a file in two parts: a header and a data array. The header contains information that is needed to interpret the array portion of the dataset, as well as metadata (or pointers to metadata) that describes or annotates the dataset. Header information includes the name of the object, its dimen­sionality, its number-type, information about how the data itself is stored on disk (the storage layout), and other information used by the library to speed up access to the dataset or maintain the file’s integrity.

The HDF5 dataset interface, comprising the H5D functions, provides a mechanism for managing HDF5 datasets including the transfer of data between memory and disk and the description of dataset proper­ties.

A dataset is used by other HDF5 APIs, either by name or by an identifier. For more information, see “Using Identifiers.”

Link/Unlink

A dataset can be added to a group with one of the H5Lcreate calls, and deleted from a group with H5Ldelete. The link and unlink operations use the name of an object, which may be a dataset. The data­set does not have to open to be linked or unlinked.

Object Reference

A dataset may be the target of an object reference. The object reference is created by H5Rcreate with the name of an object which may be a dataset and the reference type H5R_OBJECT. The dataset does not have to be open to create a reference to it.

An object reference may also refer to a region (selection) of a dataset. The reference is created with H5Rcreate and a reference type of H5R_DATASET_REGION.

An object reference can be accessed by a call to H5Rdereference. When the reference is to a dataset or dataset region, the H5Rdeference call returns an identifier to the dataset just as if H5Dopen has been called.

Adding Attributes

A dataset may have user-defined attributes which are created with H5Acreate and accessed through the H5A API. To create an attribute for a dataset, the dataset must be open, and the identifier is passed to H5Acreate. The attributes of a dataset are discovered and opened using H5Aopen_name, H5Aop­en_idx, or H5Aiterate; these functions use the identifier of the dataset. An attribute can be deleted with H5Adelete which also uses the identifier of the dataset.

5.1. Dataset Function Summaries

Functions that can be used with datasets (H5D functions) and property list functions that can used with datasets (H5P functions) are listed below.



Function Listing 5-1. Dataset functions (H5D)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Dcreate

h5dcreate_f


	
Creates a dataset at the specified location. The C function is a macro: see “API Compati­bility Macros in HDF5.”





	
H5Dcreate_anon

h5dcreate_anon_f


	
Creates a dataset in a file without linking it into the file structure.





	
H5Dopen

h5dopen_f


	
Opens an existing dataset. The C function is a macro: see “API Compatibility Macros in HDF5.”





	
H5Dclose

h5dclose_f


	
Closes the specified dataset.





	
H5Dget_space

h5dget_space_f


	
Returns an identifier for a copy of the dataspace for a dataset.





	
H5Dget_space_status

h5dget_space_status_f


	
Determines whether space has been allo­cated for a dataset.





	
H5Dget_type

h5dget_type_f


	
Returns an identifier for a copy of the data­type for a dataset.





	
H5Dget_create_plist

h5dget_create_plist_f


	
Returns an identifier for a copy of the dataset creation property list for a dataset.





	
H5Dget_access_plist

(no Fortran subroutine)


	
Returns the dataset access property list asso­ciated with a dataset.





	
H5Dget_offset

h5dget_offset_f


	
Returns the dataset address in a file.





	
H5Dget_storage_size

h5dget_storage_size_f


	
Returns the amount of storage required for a dataset.





	
H5Dvlen_get_buf_size

h5dvlen_get_max_len_f


	
Determines the number of bytes required to store variable-length (VL) data.





	
H5Dvlen_reclaim

h5dvlen_reclaim_f


	
Reclaims VL datatype memory buffers.





	
H5Dread

h5dread_f


	
Reads raw data from a dataset into a buffer.





	
H5Dwrite

h5dwrite_f


	
Writes raw data from a buffer to a dataset.





	
H5Diterate

(no Fortran subroutine)


	
Iterates over all selected elements in a dataspace.





	
H5Dgather

(no Fortran subroutine)


	
Gathers data from a selection within a mem­ory buffer.





	
H5Dscatter

(no Fortran subroutine)


	
Scatters data into a selection within a mem­ory buffer.





	
H5Dfill

h5dfill_f


	
Fills dataspace elements with a fill value in a memory buffer.





	
H5Dset_extent

h5dset_extent_f


	
Changes the sizes of a dataset’s dimensions.










Function Listing 5-2. Dataset creation property list functions (H5P)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Pset_layout

h5pset_layout_f


	
Sets the type of storage used to store the raw data for a dataset.





	
H5Pget_layout

h5pget_layout_f


	
Returns the layout of the raw data for a data­set.





	
H5Pset_chunk

h5pset_chunk_f


	
Sets the size of the chunks used to store a chunked layout dataset.





	
H5Pget_chunk

h5pget_chunk_f


	
Retrieves the size of chunks for the raw data of a chunked layout dataset.





	
H5Pset_deflate

h5pset_deflate_f


	
Sets compression method and compression level.





	
H5Pset_fill_value

h5pset_fill_value_f


	
Sets the fill value for a dataset.





	
H5Pget_fill_value

h5pget_fill_value_f


	
Retrieves a dataset fill value.





	
H5Pfill_value_defined

(no Fortran subroutine)


	
Determines whether the fill value is defined.





	
H5Pset_fill_time

h5pset_fill_time_f


	
Sets the time when fill values are written to a dataset.





	
H5Pget_fill_time

h5pget_fill_time_f


	
Retrieves the time when fill value are written to a dataset.





	
H5Pset_alloc_time

h5pset_alloc_time_f


	
Sets the timing for storage space allocation.





	
H5Pget_alloc_time

h5pget_alloc_time_f


	
Retrieves the timing for storage space alloca­tion.





	
H5Pset_filter

h5pset_filter_f


	
Adds a filter to the filter pipeline.





	
H5Pall_filters_avail

(no Fortran subroutine)


	
Verifies that all required filters are available.





	
H5Pget_nfilters

h5pget_nfilters_f


	
Returns the number of filters in the pipeline.





	
H5Pget_filter

h5pget_filter_f


	
Returns information about a filter in a pipe­line. The C function is a macro: see “API Com­patibility Macros in HDF5.”





	
H5Pget_filter_by_id

h5pget_filter_by_id_f


	
Returns information about the specified filter. The C function is a macro: see “API Compati­bility Macros in HDF5.”





	
H5Pmodify_filter

h5pmodify_filter_f


	
Modifies a filter in the filter pipeline.





	
H5Premove_filter

h5premove_filter_f


	
Deletes one or more filters in the filter pipe­line.





	
H5Pset_fletcher32

h5pset_fletcher32_f


	
Sets up use of the Fletcher32 checksum filter.





	
H5Pset_nbit

h5pset_nbit_f


	
Sets up use of the n-bit filter.





	
H5Pset_scaleoffset

h5pset_scaleoffset_f


	
Sets up use of the scale-offset filter.





	
H5Pset_shuffle

h5pset_shuffle_f


	
Sets up use of the shuffle filter.





	
H5Pset_szip

h5pset_szip_f


	
Sets up use of the Szip compression filter.





	
H5Pset_external

h5pset_external_f


	
Adds an external file to the list of external files.





	
H5Pget_external_count

h5pget_external_count_f


	
Returns the number of external files for a dataset.





	
H5Pget_external

h5pget_external_f


	
Returns information about an external file.





	
H5Pset_char_encoding

h5pset_char_encoding_f


	
Sets the character encoding used to encode a string. Use to set ASCII or UTF-8 character encoding for object names.





	
H5Pget_char_encoding

h5pget_char_encoding_f


	
Retrieves the character encoding used to cre­ate a string.










Function Listing 5-3. Dataset access property list functions (H5P)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Pset_buffer

h5pset_buffer_f


	
Sets type conversion and background buffers.





	
H5Pget_buffer

h5pget_buffer_f


	
Reads buffer settings.





	
H5Pset_chunk_cache

h5pset_chunk_cache_f


	
Sets the raw data chunk cache parameters.





	
H5Pget_chunk_cache

h5pget_chunk_cache_f


	
Retrieves the raw data chunk cache parame­ters.





	
H5Pset_edc_check

h5pset_edc_check_f


	
Sets whether to enable error-detection when reading a dataset.





	
H5Pget_edc_check

h5pget_edc_check_f


	
Determines whether error-detection is enabled for dataset reads.





	
H5Pset_filter_callback

(no Fortran subroutine)


	
Sets user-defined filter callback function.





	
H5Pset_data_transform

h5pset_data_transform_f


	
Sets a data transform expression.





	
H5Pget_data_transform

h5pget_data_transform_f


	
Retrieves a data transform expression.





	
H5Pset_type_conv_cb

(no Fortran subroutine)


	
Sets user-defined datatype conversion call­back function.





	
H5Pget_type_conv_cb

(no Fortran subroutine)


	
Gets user-defined datatype conversion call­back function.





	
H5Pset_hyper_vector_size

h5pset_hyper_vector_size_f


	
Sets number of I/O vectors to be read/written in hyperslab I/O.





	
H5Pget_hyper_vector_size

h5pget_hyper_vector_size_f


	
Retrieves number of I/O vectors to be read/written in hyperslab I/O.





	
H5Pset_btree_ratios

h5pset_btree_ratios_f


	
Sets B-tree split ratios for a dataset transfer property list.





	
H5Pget_btree_ratios

h5pget_btree_ratios_f


	
Gets B-tree split ratios for a dataset transfer property list.





	
H5Pset_vlen_mem_manager

(no Fortran subroutine)


	
Sets the memory manager for variable-length datatype allocation in H5Dread and H5Dv­len_reclaim.





	
H5Pget_vlen_mem_manager

(no Fortran subroutine)


	
Gets the memory manager for variable-length datatype allocation in H5Dread and H5Dv­len_reclaim.





	
H5Pset_dxpl_mpio

h5pset_dxpl_mpio_f


	
Sets data transfer mode.





	
H5Pget_dxpl_mpio

h5pget_dxpl_mpio_f


	
Returns the data transfer mode.





	
H5Pset_dxpl_mpio_chunk_opt

(no Fortran subroutine)


	
Sets a flag specifying linked-chunk I/O or multi-chunk I/O.





	
H5Pset_dxpl_mpio_chunk_opt_num

(no Fortran subroutine)


	
Sets a numeric threshold for linked-chunk I/O.





	
H5Pset_dxpl_mpio_chunk_opt_ratio

(no Fortran subroutine)


	
Sets a ratio threshold for collective I/O.





	
H5Pset_dxpl_mpio_collective_opt

(no Fortran subroutine)


	
Sets a flag governing the use of independent versus collective I/O.





	
H5Pset_multi_type

(no Fortran subroutine)


	
Sets the type of data property for the MULTI driver.





	
H5Pget_multi_type

(no Fortran subroutine)


	
Retrieves the type of data property for the MULTI driver.





	
H5Pset_small_data_block_size

h5pset_small_data_block_size_f


	
Sets the size of a contiguous block reserved for small data.





	
H5Pget_small_data_block_size

h5pget_small_data_block_size_f


	
Retrieves the current small data block size setting.








 

5.2. Programming Model for Datasets

This section explains the programming model for datasets.

5.2.1. General Model

The programming model for using a dataset has three main phases:

•        Obtain access to the dataset

•        Operate on the dataset using the dataset identifier returned at access

•        Release the dataset

These three phases or steps are described in more detail below the figure.

A dataset may be opened several times and operations performed with several different identifiers to the same dataset. All the operations affect the dataset although the calling program must synchronize if nec­essary to serialize accesses.

Note that the dataset remains open until every identifier is closed. The figure below shows the basic sequence of operations.



Figure 5-2. Dataset programming sequence

	
[image: Dsets_fig2.JPG]

 

 








 

Creation and data access operations may have optional parameters which are set with property lists. The general programming model is:

•        Create property list of appropriate class (dataset create, dataset transfer)

•        Set properties as needed; each type of property has its own format and datatype

•        Pass the property list as a parameter of the API call

The steps below describe the programming phases or steps for using a dataset.

Step 1. Obtain Access

A new dataset is created by a call to H5Dcreate. If successful, the call returns an identifier for the newly created dataset.

Access to an existing dataset is obtained by a call to H5Dopen. This call returns an identifier for the existing dataset.

An object reference may be dereferenced to obtain an identifier to the dataset it points to.

In each of these cases, the successful call returns an identifier to the dataset. The identifier is used in sub­sequent operations until the dataset is closed.

Step 2. Operate on the Dataset

The dataset identifier can be used to write and read data to the dataset, to query and set properties, and to perform other operations such as adding attributes, linking in groups, and creating references.

The dataset identifier can be used for any number of operations until the dataset is closed.

Step 3. Close the Dataset

When all operations are completed, the dataset identifier should be closed. This releases the dataset.

After the identifier is closed, it cannot be used for further operations.

5.2.2. Create Dataset

A dataset is created and initialized with a call to H5Dcreate. The dataset create operation sets permanent properties of the dataset:

•        Name

•        Dataspace

•        Datatype

•        Storage properties

These properties cannot be changed for the life of the dataset, although the dataspace may be expanded up to its maximum dimensions.

Name

A dataset name is a sequence of alphanumeric ASCII characters. The full name would include a tracing of the group hierarchy from the root group of the file. An example is /rootGroup/groupA/subgroup23/dataset1. The local name or relative name within the lowest-level group containing the dataset would include none of the group hierarchy. An example is Dataset1.

Dataspace

The dataspace of a dataset defines the number of dimensions and the size of each dimension. The dataspace defines the number of dimensions, and the maximum dimension sizes and current size of each dimension. The maximum dimension size can be a fixed value or the constant H5D_UNLIMITED, in which case the actual dimension size can be changed with calls to H5Dset_extent, up to the maximum set with the maxdims parameter in the H5Screate_simple call that established the dataset’s original dimen­sions. The maximum dimension size is set when the dataset is created and cannot be changed.

Datatype

Raw data has a datatype which describes the layout of the raw data stored in the file. The datatype is set when the dataset is created and can never be changed. When data is transferred to and from the dataset, the HDF5 Library will assure that the data is transformed to and from the stored format.

Storage Properties

Storage properties of the dataset are set when it is created. The required inputs table below shows the categories of storage properties. The storage properties cannot be changed after the dataset is created.

Filters

When a dataset is created, optional filters are specified. The filters are added to the data transfer pipeline when data is read or written. The standard library includes filters to implement compression, data shuf­fling, and error detection code.  Additional user-defined filters may also be used.

The required filters are stored as part of the dataset, and the list may not be changed after the dataset is created. The HDF5 Library automatically applies the filters whenever data is transferred.

Summary

A newly created dataset has no attributes and no data values. The dimensions, datatype, storage proper­ties, and selected filters are set. The table below lists the required inputs, and the second table below lists the optional inputs.



Table 5-1. Required inputs

 	
Required Inputs


 	
Description





	
Dataspace


	
The shape of the array.





	
Datatype


	
The layout of the stored elements.





	
Name


	
The name of the dataset in the group.










Table 5-2. Optional inputs

 	
Optional Inputs


 	
Description





	
Storage Layout


	
How the data is organized in the file including chunking.





	
Fill Value


	
The behavior and value for uninitialized data.





	
External Storage


	
Option to store the raw data in an external file.





	
Filters


	
Select optional filters to be applied. One of the filters that might be applied is compression.








 

Example

To create a new dataset, go through the following general steps:

•        Set dataset characteristics (optional where default settings are acceptable)

•        Datatype

•        Dataspace

•        Dataset creation property list

•        Create the dataset

•        Close the datatype, dataspace, and property list (as necessary)

•        Close the dataset

Example 1 below shows example code to create an empty dataset. The dataspace is 7 x 8, and the data­type is a big-endian integer. The dataset is created with the name “dset1” and is a member of the root group, “/”.



Code Example 5-1. Create an empty dataset

	
hid_t    dataset, datatype, dataspace;   

 

/*

* Create dataspace: Describe the size of the array and

* create the dataspace for fixed-size dataset.

*/





	
dimsf[0] = 7;

dimsf[1] = 8;

dataspace = H5Screate_simple(2, dimsf, NULL);

/*

* Define datatype for the data in the file.

* For this example, store little-endian integer numbers.

*/





	
datatype = H5Tcopy(H5T_NATIVE_INT);

status = H5Tset_order(datatype, H5T_ORDER_LE);

/*

* Create a new dataset within the file using defined

* dataspace and datatype. No properties are set.

*/

dataset = H5Dcreate(file, "/dset", datatype, dataspace,

H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);





	
 

H5Dclose(dataset);

H5Sclose(dataspace);

H5Tclose(datatype);








 

Example 2 below shows example code to create a similar dataset with a fill value of ‘-1’. This code has the same steps as in the example above, but uses a non-default property list. A file creation property list is cre­ated, and then the fill value is set to the desired value. Then the property list is passed to the H5Dcreate call.



Code Example 5-2. Create a dataset with fill value set

	
hid_t    dataset, datatype, dataspace;

hid_t plist;  /* property list */

int fillval = -1;

dimsf[0] = 7;

dimsf[1] = 8;

dataspace = H5Screate_simple(2, dimsf, NULL);

 





	
datatype = H5Tcopy(H5T_NATIVE_INT);

status = H5Tset_order(datatype, H5T_ORDER_LE);

 

/*

* Example of Dataset Creation property list: set fill value

* to '-1'

*/





	
plist = H5Pcreate(H5P_DATASET_CREATE);

status = H5Pset_fill_value(plist, datatype, &fillval);

 

/* Same as above, but use the property list */

dataset = H5Dcreate(file, "/dset", datatype, dataspace,

H5P_DEFAULT, plist, H5P_DEFAULT);





	
 

H5Dclose(dataset);

H5Sclose(dataspace);

H5Tclose(datatype);

H5Pclose(plist);








 

After this code is executed, the dataset has been created and written to the file. The data array is uninitial­ized. Depending on the storage strategy and fill value options that have been selected, some or all of the space may be allocated in the file, and fill values may be written in the file.

5.2.3. Data Transfer Operations on a Dataset

Data is transferred between memory and the raw data array of the dataset through H5Dwrite and H5Dread operations. A data transfer has the following basic steps:

1.      Allocate and initialize memory space as needed

2.      Define the datatype of the memory elements

3.      Define the elements to be transferred (a selection, or all the elements)

4.      Set data transfer properties (including parameters for filters or file drivers) as needed

5.      Call the H5D API

Note that the location of the data in the file, the datatype of the data in the file, the storage properties, and the filters do not need to be specified because these are stored as a permanent part of the dataset. A selection of elements from the dataspace is specified; the selected elements may be the whole dataspace.

The figure below shows a diagram of a write operation which transfers a data array from memory to a dataset in the file (usually on disk). A read operation has similar parameters with the data flowing the other direction.



Figure 5-3. A write operation

	
[image: Dsets_fig5.JPG]

 

 








 

Memory Space

The calling program must allocate sufficient memory to store the data elements to be transferred. For a write (from memory to the file), the memory must be initialized with the data to be written to the file. For a read, the memory must be large enough to store the elements that will be read. The amount of storage needed can be computed from the memory datatype (which defines the size of each data element) and the number of elements in the selection.

Memory Datatype

The memory layout of a single data element is specified by the memory datatype. This specifies the size, alignment, and byte order of the element as well as the datatype class. Note that the memory datatype must be the same datatype class as the file, but may have different byte order and other properties. The HDF5 Library automatically transforms data elements between the source and destination layouts. For more information, see "HDF5 Datatypes."

For a write, the memory datatype defines the layout of the data to be written; an example is IEEE floating-point numbers in native byte order. If the file datatype (defined when the dataset is created) is different but compatible, the HDF5 Library will transform each data element when it is written. For example, if the file byte order is different than the native byte order, the HDF5 Library will swap the bytes.

For a read, the memory datatype defines the desired layout of the data to be read. This must be compati­ble with the file datatype, but should generally use native formats such as byte orders. The HDF5 Library will transform each data element as it is read.

Selection

The data transfer will transfer some or all of the elements of the dataset depending on the dataspace selection. The selection has two dataspace objects: one for the source, and one for the destination. These objects describe which elements of the dataspace to be transferred. Some (partial I/O) or all of the data may be transferred. Partial I/O is defined by defining hyperslabs or lists of elements in a dataspace object.

The dataspace selection for the source defines the indices of the elements to be read or written. The two selections must define the same number of points, but the order and layout may be different. The HDF5 Library automatically selects and distributes the elements according to the selections. It might, for exam­ple, perform a scatter-gather or sub-set of the data.

Data Transfer Properties

For some data transfers, additional parameters should be set using the transfer property list. The table below lists the categories of transfer properties. These properties set parameters for the HDF5 Library and may be used to pass parameters for optional filters and file drivers. For example, transfer properties are used to select independent or collective operation when using MPI-I/O.



Table 5-3. Categories of transfer properties

 	
Properties


 	
Description





	
Library parameters


	
Internal caches, buffers, B-Trees, etc.





	
Memory management


	
Variable-length memory management, data overwrite





	
File driver management


	
Parameters for file drivers





	
Filter management


	
Parameters for filters








 

Data Transfer Operation (Read or Write)

The data transfer is done by calling H5Dread or H5Dwrite with the parameters described above. The HDF5 Library constructs the required pipeline, which will scatter-gather, transform datatypes, apply the requested filters, and use the correct file driver.

During the data transfer, the transformations and filters are applied to each element of the data in the required order until all the data is transferred.

Summary

To perform a data transfer, it is necessary to allocate and initialize memory, describe the source and desti­nation, set required and optional transfer properties, and call the H5D API.

Examples

The basic procedure to write to a dataset is the following:

•        Open the dataset.

•        Set the dataset dataspace for the write (optional if dataspace is H5S_SELECT_ALL).

•        Write data.

•        Close the datatype, dataspace, and property list (as necessary).

•        Close the dataset.

Example 3 below shows example code to write a 4 x 6 array of integers. In the example, the data is initial­ized in the memory array dset_data. The dataset has already been created in the file, so it is opened with H5Dopen.

The data is written with H5Dwrite. The arguments are the dataset identifier, the memory datatype (H5T_NATIVE_INT), the memory and file selections (H5S_ALL in this case: the whole array), and the default (empty) property list. The last argument is the data to be transferred.



Code Example 5-3. Write an array of integers

	
hid_t       file_id, dataset_id;  /* identifiers */

herr_t      status;

int         i, j, dset_data[4][6];

 





	
/* Initialize the dataset. */

for (i = 0; i < 4; i++)

   for (j = 0; j < 6; j++)

dset_data[i][j] = i * 6 + j + 1;

 





	
/* Open an existing file. */

file_id = H5Fopen("dset.h5", H5F_ACC_RDWR, H5P_DEFAULT);

 

/* Open an existing dataset. */

dataset_id = H5Dopen(file_id, "/dset", H5P_DEFAULT);

 





	
/* Write the entire dataset, using 'dset_data':

memory type is 'native int'

write the entire dataspace to the entire dataspace,

no transfer properties,

*/

status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL,

H5S_ALL, H5P_DEFAULT, dset_data);

 

status = H5Dclose(dataset_id);








 

Example 4 below shows a similar write except for setting a non-default value for the transfer buffer. The code is the same as Example 3, but a transfer property list is created, and the desired buffer size is set. The H5Dwrite function has the same arguments, but uses the property list to set the buffer.



Code Example 5-4. Write an array using a property list

	
hid_t       file_id, dataset_id;  

hid_t       xferplist;

herr_t      status;

int         i, j, dset_data[4][6];

 





	
file_id = H5Fopen("dset.h5", H5F_ACC_RDWR, H5P_DEFAULT);

 

dataset_id = H5Dopen(file_id, "/dset", H5P_DEFAULT);

 

/*

* Example: set type conversion buffer to 64MB

*/





	
xferplist = H5Pcreate(H5P_DATASET_XFER);

status = H5Pset_buffer( xferplist, 64 * 1024 *1024, NULL, NULL);

 

/* Write the entire dataset, using 'dset_data':

memory type is 'native int'

write the entire dataspace to the entire dataspace,

set the buffer size with the property list,

*/





	
status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL,

H5S_ALL, xferplist, dset_data);

 

status = H5Dclose(dataset_id);








 

The basic procedure to read from a dataset is the following:

•        Define the memory dataspace of the read (optional if dataspace is H5S_SELECT_ALL).

•        Open the dataset.

•        Get the dataset dataspace (if using H5S_SELECT_ALL above).

Else define dataset dataspace of read.

•        Define the memory datatype (optional).

•        Define the memory buffer.

•        Open the dataset.

•        Read data.

•        Close the datatype, dataspace, and property list (as necessary).

•        Close the dataset.

The example below shows code that reads a 4 x 6 array of integers from a dataset called “dset1”. First, the dataset is opened. The H5Dread call has parameters:

•        The dataset identifier (from H5Dopen)

•        The memory datatype (H5T_NATVE_INT)

•        The memory and file dataspace (H5S_ALL, the whole array)

•        A default (empty) property list

•        The memory to be filled



Code Example 5-5. Read an array from a dataset

	
hid_t       file_id, dataset_id;  

herr_t      status;

int         i, j, dset_data[4][6];

 

/* Open an existing file. */

file_id = H5Fopen("dset.h5", H5F_ACC_RDWR, H5P_DEFAULT);

 





	
/* Open an existing dataset. */

dataset_id = H5Dopen(file_id, "/dset", H5P_DEFAULT);

 

/* read the entire dataset, into 'dset_data':

memory type is 'native int'

read the entire dataspace to the entire dataspace,

no transfer properties,





	
*/

status = H5Dread(dataset_id, H5T_NATIVE_INT, H5S_ALL,

H5S_ALL, H5P_DEFAULT, dset_data);

 

status = H5Dclose(dataset_id);








 

5.2.4. Retrieve the Properties of a Dataset

The functions listed below allow the user to retrieve information regarding a dataset including the data­type, the dataspace, the dataset creation property list, and the total stored size of the data.



Function Listing 5-4. Retrieve dataset information

 	
Query Function


 	
Description





	
H5Dget_space


	
Retrieve the dataspace of the dataset as stored in the file.





	
H5Dget_type


	
Retrieve the datatype of the dataset as stored in the file.





	
H5Dget_create_plist


	
Retrieve the dataset creation properties.    





	
H5Dget_storage_size


	
Retrieve the total bytes for all the data of the dataset.    





	
H5Dvlen_get_buf_size


	
 Retrieve the total bytes for all the variable-length data of the dataset.








 

The example below illustrates how to retrieve dataset information.



Code Example 5-6. Retrieve dataset

	
hid_t       file_id, dataset_id;

hid_t       dspace_id, dtype_id, plist_id;

herr_t      status;

 





	
/* Open an existing file. */

file_id = H5Fopen("dset.h5", H5F_ACC_RDWR, H5P_DEFAULT);

 

/* Open an existing dataset. */

dataset_id = H5Dopen(file_id, "/dset", H5P_DEFAULT);

 





	
dspace_id = H5Dget_space(dataset_id);

dtype_id = H5Dget_type(dataset_id);

plist_id = H5Dget_create_plist(dataset_id);

 

/* use the objects to discover the properties of the dataset */

 

status = H5Dclose(dataset_id);








 

5.3. Data Transfer

The HDF5 Library implements data transfers through a pipeline which implements data transformations (according to the datatype and selections), chunking (as requested), and I/O operations using different mechanisms (file drivers). The pipeline is automatically configured by the HDF5 Library. Metadata is stored in the file so that the correct pipeline can be constructed to retrieve the data. In addition, optional filters such as compression may be added to the standard pipeline.

The figure below illustrates data layouts for different layers of an application using HDF5. The application data is organized as a multidimensional array of elements. The HDF5 format specification defines the stored layout of the data and metadata. The storage layout properties define the organization of the abstract data. This data is written and read to and from some storage medium.



Figure 5-4. Data layouts in an application

	
[image: Dsets_fig9.JPG]

 

 








 

The last stage of a write (and first stage of a read) is managed by an HDF5 file driver module. The virtual file layer of the HDF5 Library implements a standard interface to alternative I/O methods, including mem­ory (AKA “core”) files, single serial file I/O, multiple file I/O, and parallel I/O. The file driver maps a simple abstract HDF5 file to the specific access methods.

The raw data of an HDF5 dataset is conceived to be a multidimensional array of data elements. This array may be stored in the file according to several storage strategies:

•        Contiguous

•        Chunked

•        Compact

The storage strategy does not affect data access methods except that certain operations may be more or less efficient depending on the storage strategy and the access patterns.

Overall, the data transfer operations (H5Dread and H5Dwrite) work identically for any storage method, for any file driver, and for any filters and transformations. The HDF5 Library automatically manages the data transfer process. In some cases, transfer properties should or must be used to pass additional param­eters such as MPI/IO directives when using the parallel file driver.

5.3.1. The Data Pipeline

When data is written or read to or from an HDF5 file, the HDF5 Library passes the data through a sequence of processing steps which are known as the HDF5 data pipeline. This data pipeline performs operations on the data in memory such as byte swapping, alignment, scatter-gather, and hyperslab selections. The HDF5 Library automatically determines which operations are needed and manages the organization of memory operations such as extracting selected elements from a data block. The data pipeline modules operate on data buffers: each module processes a buffer and passes the transformed buffer to the next stage.

The table below lists the stages of the data pipeline. The figure below the table shows the order of pro­cessing during a read or write.



Table 5-4. Stages of the data pipeline

 	
Layers


 	
Description





	
I/O initiation


	
Initiation of HDF5 I/O activities (H5Dwrite and H5Dread) in a user’s application program.





	
Memory hyperslab opera­tion


	
Data is scattered to (for read), or gathered from (for write) the application’s memory buffer (bypassed if no datatype conversion is needed).





	
Datatype conversion


	
Datatype is converted if it is different between memory and stor­age (bypassed if no datatype conversion is needed).





	
File hyperslab operation


	
Data is gathered from (for read), or scattered to (for write) to file space in memory (bypassed if no datatype conversion is needed).





	
Filter pipeline


	
Data is processed by filters when it passes. Data can be modified and restored here (bypassed if no datatype conversion is needed, no filter is enabled, or dataset is not chunked).





	
Virtual File Layer


	
Facilitate easy plug-in file drivers such as MPIO or POSIX I/O.





	
Actual I/O


	
Actual file driver used by the library such as MPIO or STDIO.










Figure 5-5. The processing order in the data pipeline

	
[image: Dsets_fig10.JPG]

 

 








 

The HDF5 Library automatically applies the stages as needed.

When the memory dataspace selection is other than the whole dataspace, the memory hyperslab stage scatters/gathers the data elements between the application memory (described by the selection) and a contiguous memory buffer for the pipeline. On a write, this is a gather operation; on a read, this is a scat­ter operation.

When the memory datatype is different from the file datatype, the datatype conversion stage transforms each data element. For example, if data is written from 32-bit big-endian memory, and the file datatype is 32-bit little-endian, the datatype conversion stage will swap the bytes of every elements. Similarly, when data is read from the file to native memory, byte swapping will be applied automatically when needed.

The file hyperslab stage is similar to the memory hyperslab stage, but is managing the arrangement of the elements according to the dataspace selection. When data is read, data elements are gathered from the data blocks from the file to fill the contiguous buffers which are then processed by the pipeline. When data is read, the elements from a buffer are scattered to the data blocks of the file.

5.3.2. Data Pipeline Filters

In addition to the standard pipeline, optional stages, called filters, can be inserted in the pipeline. The standard distribution includes optional filters to implement compression and error checking. User applica­tions may add custom filters as well.

The HDF5 Library distribution includes or employs several optional filters. These are listed in the table below. The filters are applied in the pipeline between the virtual file layer and the file hyperslab operation. See the figure above. The application can use any number of filters in any order.



Table 5-5. Data pipeline filters

 	
Filter


 	
Description





	
gzip compression


	
Data compression using zlib.





	
Szip compression


	
Data compression using the Szip library. See The HDF Group website for more information regarding the Szip filter.





	
N-bit compression


	
Data compression using an algorithm specialized for n-bit datatypes.





	
Scale-offset compression


	
Data compression using a “scale and offset” algorithm.





	
Shuffling


	
To improve compression performance, data is regrouped by its byte position in the data unit. In other words, the 1st, 2nd, 3rd, and 4th bytes of integers are stored together respectively.





	
Fletcher32


	
Fletcher32 checksum for error-detection.








 

Filters may be used only for chunked data and are applied to chunks of data between the file hyperslab stage and the virtual file layer. At this stage in the pipeline, the data is organized as fixed-size blocks of ele­ments, and the filter stage processes each chunk separately.

Filters are selected by dataset creation properties, and some behavior may be controlled by data transfer properties. The library determines what filters must be applied and applies them in the order in which they were set by the application. That is, if an application calls H5Pset_shuffle and then H5Pset_de­flate when creating a dataset’s creation property list, the library will apply the shuffle filter first and then the deflate filter.

For more information, see "Using the N-bit Filter."For more information, see "Using the Scale-offset Filter."

5.3.3. File Drivers

I/O is performed by the HDF5 virtual file layer. The file driver interface writes and reads blocks of data; each driver module implements the interface using different I/O mechanisms. The table below lists the file drivers currently supported. Note that the I/O mechanisms are separated from the pipeline processing: the pipeline and filter operations are identical no matter what data access mechanism is used.



Table 5-6. I/O file drivers

 	
File Driver


 	
Description





	
H5FD_CORE


	
Store in memory (optional backing store to disk file).    





	
H5FD_FAMILY


	
Store in a set of files.    





	
H5FD_LOG


	
Store in logging file.    





	
H5FD_MPIO


	
Store using MPI/IO.    





	
H5FD_MULTI


	
Store in multiple files. There are several options to control layout.    





	
H5FD_SEC2


	
Serial I/O to file using Unix “section 2” functions.    





	
H5FD_STDIO


	
Serial I/O to file using Unix “stdio” functions.    








 

Each file driver writes/reads contiguous blocks of bytes from a logically contiguous address space. The file driver is responsible for managing the details of the different physical storage methods.

In serial environments, everything above the virtual file layer tends to work identically no matter what storage method is used.

Some options may have substantially different performance depending on the file driver that is used. In particular, multi-file and parallel I/O may perform considerably differently from serial drivers depending on chunking and other settings.

5.3.4. Data Transfer Properties to Manage the Pipeline

Data transfer properties set optional parameters that control parts of the data pipeline. The function list­ing below shows transfer properties that control the behavior of the library.



Function Listing 5-5. Data transfer property list functions

 	
C Function


 	
Purpose





	
H5Pset_buffer


	
Maximum size for the type conversion buffer and the back­ground buffer. May also supply pointers to application-allo­cated buffers.    





	
H5Pset_hyper_cache


	
Whether to cache hyperslab blocks during I/O.    





	
H5Pset_btree_ratios


	
Set the B-tree split ratios for a dataset transfer property list. The split ratios determine what percent of children go in the first node when a node splits.    








 

Some filters and file drivers require or use additional parameters from the application program. These can be passed in the data transfer property list. The table below shows file driver property list functions.



Function Listing 5-6. File driver property list functions

 	
C Function


 	
Purpose





	
H5Pset_dxpl_mpio


	
Control the MPI I/O transfer mode (independent or collective) during data I/O operations.





	
H5Pset_small_data_block_size


	
Reserves blocks of size bytes for the contiguous storage of the raw data portion of small datasets. The HDF5 Library then writes the raw data from small datasets to this reserved space which reduces unnecessary discontinuities within blocks of metadata and improves I/O performance.





	
H5Pset_edc_check


	
Disable/enable EDC checking for read. When selected, EDC is always written.    








 

The transfer properties are set in a property list which is passed as a parameter of the H5Dread or H5Dwrite call. The transfer properties are passed to each pipeline stage. Each stage may use or ignore any property in the list. In short, there is one property list that contains all the properties.

5.3.5. Storage Strategies

The raw data is conceptually a multi-dimensional array of elements that is stored as a contiguous array of bytes. The data may be physically stored in the file in several ways. The table below lists the storage strat­egies for a dataset.



Table 5-7. Dataset storage strategies

 	
Storage Strategy


 	
Description





	
Contiguous


	
The dataset is stored as one continuous array of bytes.





	
Chunked


	
The dataset is stored as fixed-size chunks.





	
Compact


	
A small dataset is stored in the metadata header.    








 

The different storage strategies do not affect the data transfer operations of the dataset: reads and writes work the same for any storage strategy.

These strategies are described in the following sections.

Contiguous

A contiguous dataset is stored in the file as a header and a single continuous array of bytes. See the figure below. In the case of a multi-dimensional array, the data is serialized in row major order. By default, data is stored contiguously.



Figure 5-6. Contiguous data storage

	
[image: Dsets_fig12.JPG]

 

 








 

Contiguous storage is the simplest model. It has several limitations. First, the dataset must be a fixed-size: it is not possible to extend the limit of the dataset or to have unlimited dimensions. In other words, if the number of dimensions of the array might change over time, then chunking storage must be used instead of contiguous. Second, because data is passed through the pipeline as fixed-size blocks, compression and other filters cannot be used with contiguous data.

Chunked

The data of a dataset may be stored as fixed-size chunks. See the figure below. A chunk is a hyper-rectan­gle of any shape. When a dataset is chunked, each chunk is read or written as a single I/O operation, and individually passed from stage to stage of the data pipeline.



Figure 5-7. Chunked data storage

	
[image: Dsets_fig13.JPG]

 

 








 

Chunks may be any size and shape that fits in the dataspace of the dataset. For example, a three dimen­sional dataspace can be chunked as 3-D cubes, 2-D planes, or 1-D lines. The chunks may extend beyond the size of the dataspace. For example, a 3 x 3 dataset might by chunked in 2 x 2 chunks. Sufficient chunks will be allocated to store the array, and any extra space will not be accessible. So, to store the 3 x 3 array, four 2 x 2 chunks would be allocated with 5 unused elements stored.

Chunked datasets can be unlimited in any direction and can be compressed or filtered.

Since the data is read or written by chunks, chunking can have a dramatic effect on performance by opti­mizing what is read and written. Note, too, that for specific access patterns such as parallel I/O, decompo­sition into chunks can have a large impact on performance.

Two restrictions have been placed on chunk shape and size:

•        The rank of a chunk must be less than or equal to the rank of the dataset

•        Chunk size cannot exceed the size of a fixed-size dataset; for example, a dataset consisting of a 5 x 4 fixed-size array cannot be defined with 10 x 10 chunks

Compact

For contiguous and chunked storage, the dataset header information and data are stored in two (or more) blocks. Therefore, at least two I/O operations are required to access the data: one to access the header, and one (or more) to access data. For a small dataset, this is considerable overhead.

A small dataset may be stored in a continuous array of bytes in the header block using the compact stor­age option. This dataset can be read entirely in one operation which retrieves the header and data. The dataset must fit in the header. This may vary depending on the metadata that is stored. In general, a com­pact dataset should be approximately 30 KB or less total size. See the figure below.



Figure 5-8. Compact data storage

	
[image: Dsets_fig14.JPG]

 

 








 

5.3.6. Partial I/O Sub-setting and Hyperslabs

Data transfers can write or read some of the data elements of the dataset. This is controlled by specifying two selections: one for the source and one for the destination. Selections are specified by creating a dataspace with selections.

Selections may be a union of hyperslabs or a list of points. A hyperslab is a contiguous hyper-rectangle from the dataspace. Selected fields of a compound datatype may be read or written. In this case, the selection is controlled by the memory and file datatypes.

Summary of procedure:

1.      Open the dataset

2.      Define the memory datatype

3.      Define the memory dataspace selection and file dataspace selection

4.      Transfer data (H5Dread or H5Dwrite)

For more information, see "HDF5 Dataspaces and Partial I/O."

5.4. Allocation of Space in the File

When a dataset is created, space is allocated in the file for its header and initial data. The amount of space allocated when the dataset is created depends on the storage properties. When the dataset is modified (data is written, attributes added, or other changes), additional storage may be allocated if necessary.



Table 5-8. Initial dataset size

 	
Object


 	
Size





	
Header


	
Variable, but typically around 256 bytes at the creation of a simple dataset with a simple datatype.





	
Data


	
Size of the data array (number of elements x size of element). Space allocated in the file depends on the storage strategy and the allocation strategy.








 

Header

A dataset header consists of one or more header messages containing persistent metadata describing var­ious aspects of the dataset. These records are defined in the HDF5 File Format Specification. The amount of storage required for the metadata depends on the metadata to be stored. The table below summarizes the metadata.



Table 5-9. Metadata storage sizes

 	
Header Information


 	
Approximate Storage Size





	
Datatype (required)


	
Bytes or more. Depends on type.





	
Dataspace (required)


	
Bytes or more. Depends on number of dimensions and hsize_t.    





	
Layout (required)


	
Points to the stored data. Bytes or more. Depends on hsize_t and number of dimensions.





	
Filters


	
Depends on the number of filters. The size of the filter message depends on the name and data that will be passed.    








 

The header blocks also store the name and values of attributes, so the total storage depends on the num­ber and size of the attributes.

In addition, the dataset must have at least one link, including a name, which is stored in the file and in the group it is linked from.

The different storage strategies determine when and how much space is allocated for the data array. See the discussion of fill values below for a detailed explanation of the storage allocation.

Contiguous Storage

For a continuous storage option, the data is stored in a single, contiguous block in the file. The data is nominally a fixed-size, (number of elements x size of element). The figure below shows an example of a two dimensional array stored as a contiguous dataset.

Depending on the fill value properties, the space may be allocated when the dataset is created or when first written (default), and filled with fill values if specified. For parallel I/O, by default the space is allo­cated when the dataset is created.



Figure 5-9. A two dimensional array stored as a contiguous dataset

	
[image: Dsets_fig15.JPG]

 

 








 

Chunked Storage

For chunked storage, the data is stored in one or more chunks. Each chunk is a continuous block in the file, but chunks are not necessarily stored contiguously. Each chunk has the same size. The data array has the same nominal size as a contiguous array (number of elements x size of element), but the storage is allo­cated in chunks, so the total size in the file can be larger that the nominal size of the array. See the figure below.

If a fill value is defined, each chunk will be filled with the fill value. Chunks must be allocated when data is written, but they may be allocated when the file is created, as the file expands, or when data is written.

For serial I/O, by default chunks are allocated incrementally, as data is written to the chunk. For a sparse dataset, chunks are allocated only for the parts of the dataset that are written. In this case, if the dataset is extended, no storage is allocated.

For parallel I/O, by default chunks are allocated when the dataset is created or extended with fill values written to the chunk.

In either case, the default can be changed using fill value properties. For example, using serial I/O, the properties can select to allocate chunks when the dataset is created.



Figure 5-10. A two dimensional array stored in chunks

	
[image: Dsets_fig16.JPG]

 

 








 

Changing Dataset Dimensions

H5Dset_extent is used to change the current dimensions of the dataset within the limits of the dataspace. Each dimension can be extended up to its maximum or unlimited. Extending the dataspace may or may not allocate space in the file and may or may not write fill values, if they are defined. See the example code below.

The dimensions of the dataset can also reduced. If the sizes specified are smaller than the dataset’s cur­rent dimension sizes, H5Dset_extent will reduce the dataset’s dimension sizes to the specified values. It is the user’s responsibility to ensure that valuable data is not lost; H5Dset_extent does not check.



Code Example 5-7. Using H5Dset_extent to increase the size of a dataset

	
hid_t       file_id, dataset_id;  

Herr_t      status;

size_t      newdims[2];

 

/* Open an existing file. */

file_id = H5Fopen("dset.h5", H5F_ACC_RDWR, H5P_DEFAULT);

 





	
/* Open an existing dataset. */

dataset_id = H5Dopen(file_id, "/dset", H5P_DEFAULT);

 

/* Example:  dataset is 2 x 3, each dimension is UNLIMITED */

/* extend to 2 x 7 */

newdims[0] = 2;

newdims[1] = 7;





	
 

status = H5Dset_extent(dataset_id, newdims);

 

/* dataset is now 2 x 7 */

 

status = H5Dclose(dataset_id);








 

5.4.1. Storage Allocation in the File: Early, Incremental, Late

The HDF5 Library implements several strategies for when storage is allocated if and when it is filled with fill values for elements not yet written by the user. Different strategies are recommended for different storage layouts and file drivers. In particular, a parallel program needs storage allocated during a collective call (for example, create or extend) while serial programs may benefit from delaying the allocation until the data is written.

Two file creation properties control when to allocate space, when to write the fill value, and the actual fill value to write.

When to Allocate Space

The table below shows the options for when data is allocated in the file. Early allocation is done during the dataset create call. Certain file drivers (especially MPI-I/O and MPI-POSIX) require space to be allocated when a dataset is created, so all processors will have the correct view of the data.



Table 5-10. File storage allocation options

 	
Strategy


 	
Description





	
Early


	
Allocate storage for the dataset immediately when the dataset is cre­ated.





	
Late


	
Defer allocating space for storing the dataset until the dataset is written.





	
Incremental


	
Defer allocating space for storing each chunk until the chunk is written.





	
Default


	
Use the strategy (Early, Late, or Incremental) for the storage method and access method. This is the recommended strategy.    








 

Late allocation is done at the time of the first write to dataset. Space for the whole dataset is allocated at the first write.

Incremental allocation (chunks only) is done at the time of the first write to the chunk. Chunks that have never been written are not allocated in the file. In a sparsely populated dataset, this option allocates chunks only where data is actually written.

The “Default” property selects the option recommended as appropriate for the storage method and access method. The defaults are shown in the table below. Note that Early allocation is recommended for all Parallel I/O, while other options are recommended as the default for serial I/O cases.



Table 5-11. Default storage options

 	
Storage Type


 	
Serial I/O


 	
Parallel I/O





	
Contiguous


	
Late


	
Early





	
Chunked


	
Incremental


	
Early





	
Compact


	
Early


	
Early








 

When to Write the Fill Value

The second property is when to write the fill value. The possible values are “Never” and “Allocation”. The table below shows these options.



Table 5-12. When to write fill values

 	
When


 	
Description





	
Never


	
Fill value will never be written.





	
Allocation


	
Fill value is written when space is allocated. (Default for chunked and contigu­ous data storage.)    








 

What Fill Value to Write

The third property is the fill value to write. The table below shows the values. By default, the data is filled with zeros. The application may choose no fill value (Undefined). In this case, uninitialized data may have random values. The application may define a fill value of an appropriate type. For more information, see "Fill Values."



Table 5-13. Fill values to write

 	
What to Write


 	
Description





	
Default


	
By default, the library fills allocated space with zeros.





	
Undefined


	
Allocated space is filled with random values.





	
User-defined


	
The application specifies the fill value.    








 

Together these three properties control the library’s behavior. The table below summarizes the possibili­ties during the dataset create-write-close cycle.



Table 5-14. Storage allocation and fill summary

 	
When to allocate space


 	
When to write fill value


 	
What fill value to write


 	
Library create-write-close behavior





	
Early


	
Never


	
-


	
Library allocates space when dataset is cre­ated, but never writes a fill value to dataset. A read of unwritten data returns undefined val­ues.





	
Late


	
Never


	
-


	
Library allocates space when dataset is writ­ten to, but never writes a fill value to the dataset. A read of unwritten data returns undefined values.





	
Incremental


	
Never


	
-


	
Library allocates space when a dataset or chunk (whichever is the smallest unit of space) is written to, but it never writes a fill value to a dataset or a chunk. A read of unwritten data returns undefined values.





	
-


	
Allocation


	
Undefined


	
Error on creating the dataset. The dataset is not created.





	
Early


	
Allocation


	
Default or User-defined


	
Allocate space for the dataset when the data­set is created. Write the fill value (default or user-defined) to the entire dataset when the dataset is created.





	
Late


	
Allocation


	
Default or User-defined


	
Allocate space for the dataset when the appli­cation first writes data values to the dataset. Write the fill value to the entire dataset before writing application data values.





	
Incremental


	
Allocation


	
Default or User-defined


	
Allocate space for the dataset when the appli­cation first writes data values to the dataset or chunk (whichever is the smallest unit of space). Write the fill value to the entire data­set or chunk before writing application data values.








 

During the H5Dread function call, the library behavior depends on whether space has been allocated, whether the fill value has been written to storage, how the fill value is defined, and when to write the fill value. The table below summarizes the different behaviors.



Table 5-15. H5Dread summary

 	
Is space allocated in the file?


 	
What is the fill value?


 	
When to write the fill value?


 	
Library read behavior





	
No


	
Undefined


	
<<any>>


	
Error. Cannot create this dataset.    





	
No


	
Default or User-defined


	
<<any>>


	
Fill the memory buffer with the fill value.





	
Yes


	
Undefined


	
<<any>>


	
Return data from storage (dataset). Trash is possible if the application has not written data to the portion of the dataset being read.





	
Yes


	
Default or User-defined


	
Never


	
Return data from storage (dataset). Trash is possible if the application has not written data to the portion of the dataset being read.





	
Yes


	
Default or User-defined


	
Allocation


	
Return data from storage (dataset).








 

There are two cases to consider depending on whether the space in the file has been allocated before the read or not. When space has not yet been allocated and if a fill value is defined, the memory buffer will be filled with the fill values and returned. In other words, no data has been read from the disk. If space has been allocated, the values are returned from the stored data. The unwritten elements will be filled accord­ing to the fill value.

5.4.2. Deleting a Dataset from a File and Reclaiming Space

HDF5 does not at this time provide an easy mechanism to remove a dataset from a file or to reclaim the storage space occupied by a deleted object.

Removing a dataset and reclaiming the space it used can be done with the H5Ldelete function and the h5repack utility program. With the H5Ldelete function, links to a dataset can be removed from the file structure. After all the links have been removed, the dataset becomes inaccessible to any application and is effectively removed from the file. The way to recover the space occupied by an unlinked dataset is to write all of the objects of the file into a new file. Any unlinked object is inaccessible to the application and will not be included in the new file. Writing objects to a new file can be done with a custom program or with the h5repack utility program.

For more information, see "HDF5 Groups."

5.4.3. Releasing Memory Resources

The system resources required for HDF5 objects such as datasets, datatypes, and dataspaces should be released once access to the object is no longer needed. This is accomplished via the appropriate close function. This is not unique to datasets but a general requirement when working with the HDF5 Library; failure to close objects will result in resource leaks.

In the case where a dataset is created or data has been transferred, there are several objects that must be closed. These objects include datasets, datatypes, dataspaces, and property lists.

The application program must free any memory variables and buffers it allocates. When accessing data from the file, the amount of memory required can be determined by calculating the size of the memory datatype and the number of elements in the memory selection.

Variable-length data are organized in two or more areas of memory. For more information, see "Variable-length Datatypes."When writing data, the application creates an array of vl_info_t which contains pointers to the elements. The elements might be, for example, strings. In the file, the variable-length data is stored in two parts: a heap with the variable-length values of the data elements and an array of vl_info_t elements. When the data is read, the amount of memory required for the heap can be determined with the H5Dget_vlen_buf_size call.

The data transfer property may be used to set a custom memory manager for allocating variable-length data for a H5Dread. This is set with the H5Pset_vlen_mem_manager call.

To free the memory for variable-length data, it is necessary to visit each element, free the variable-length data, and reset the element. The application must free the memory it has allocated. For memory allocated by the HDF5 Library during a read, the H5Dvlen_reclaim function can be used to perform this opera­tion.

5.4.4. External Storage Properties

The external storage format allows data to be stored across a set of non-HDF5 files. A set of segments (off­sets and sizes) in one or more files is defined as an external file list, or EFL, and the contiguous logical addresses of the data storage are mapped onto these segments. Currently, only the H5D_CONTIGUOUS storage format allows external storage. External storage is enabled by a dataset creation property. The table below shows the API.



Table 5-16. External storage API

 	
Function


 	
Description





	
herr_t H5Pset_external (hid_t plist, const char *name, off_t offset, hsize_t size)


	
This function adds a new segment to the end of the external file list of the specified dataset creation property list. The segment begins a byte offset of file name and continues for size bytes. The space represented by this segment is adjacent to the space already represented by the external file list. The last segment in a file list may have the size H5F_UNLIMITED, in which case the external file may be of unlim­ited size and no more files can be added to the external files list.





	
int H5Pget_external_count (hid_t plist)


	
Calling this function returns the number of segments in an external file list. If the dataset creation property list has no external data, then zero is returned.





	
herr_t H5Pget_external (hid_t plist, int idx, size_t name_size, char *name, off_t *offset, hsize_t *size)


	
This is the counterpart for the H5Pset_ex­ternal() function. Given a dataset creation property list and a zero-based index into that list, the file name, byte offset, and segment size are returned through non-null argu­ments. At most name_size characters are copied into the name argument which is not null terminated if the file name is longer than the supplied name buffer (this is similar to strncpy()).     








 

The figure below shows an example of how a contiguous, one-dimensional dataset is partitioned into three parts and each of those parts is stored in a segment of an external file. The top rectangle represents the logical address space of the dataset while the bottom rectangle represents an external file.



Figure 5-11. External file storage

	
[image: Dsets_fig19.JPG]

 

 








 

The example below shows code that defines the external storage for the example. Note that the segments are defined in order of the logical addresses they represent, not their order within the external file. It would also have been possible to put the segments in separate files. Care should be taken when setting up segments in a single file since the library does not automatically check for segments that overlap.



Code Example 5-8. External storage

	
Plist = H5Pcreate (H5P_DATASET_CREATE);

H5Pset_external (plist, "velocity.data", 3000, 1000);

H5Pset_external (plist, "velocity.data", 0, 2500);

H5Pset_external (plist, "velocity.data", 4500, 1500);








 

The figure below shows an example of how a contiguous, two-dimensional dataset is partitioned into three parts and each of those parts is stored in a separate external file. The top rectangle represents the logical address space of the dataset while the bottom rectangles represent external files.



Figure 5-12. Partitioning a 2-D dataset for external storage

	
[image: Dsets_fig20.jpg]

 

 








 

The example below shows code for the partitioning described above. In this example, the library maps the multi-dimensional array onto a linear address space as defined by the HDF5 format specification, and then maps that address space into the segments defined in the external file list.



Code Example 5-9. Partitioning a 2-D dataset for external storage

	
Plist = H5Pcreate (H5P_DATASET_CREATE);

H5Pset_external (plist, "scan1.data", 0, 24);

H5Pset_external (plist, "scan2.data", 0, 24);

H5Pset_external (plist, "scan3.data", 0, 16);








 

The segments of an external file can exist beyond the end of the (external) file. The library reads that part of a segment as zeros. When writing to a segment that exists beyond the end of a file, the external file is automatically extended. Using this feature, one can create a segment (or set of segments) which is larger than the current size of the dataset. This allows the dataset to be extended at a future time (provided the dataspace also allows the extension).

All referenced external data files must exist before performing raw data I/O on the dataset. This is nor­mally not a problem since those files are being managed directly by the application or indirectly through some other library. However, if the file is transferred from its original context, care must be taken to assure that all the external files are accessible in the new location.

5.5. Using HDF5 Filters

This section describes in detail how to use the n-bit and scale-offset filters.

5.5.1. Using the N-bit Filter

N-bit data has n significant bits, where n may not correspond to a precise number of bytes. On the other hand, computing systems and applications universally, or nearly so, run most efficiently when manipulat­ing data as whole bytes or multiple bytes.

Consider the case of 12-bit integer data. In memory, that data will be handled in at least 2 bytes, or 16 bits, and on some platforms in 4 or even 8 bytes. The size of such a dataset can be significantly reduced when written to disk if the unused bits are stripped out.

The n-bit filter is provided for this purpose, packing n-bit data on output by stripping off all unused bits and unpacking on input, restoring the extra bits required by the computational processor.

N-bit Datatype

An n-bit datatype is a datatype of n significant bits. Unless it is packed, an n-bit datatype is presented as an n-bit bitfield within a larger-sized value. For example, a 12-bit datatype might be presented as a 12-bit field in a 16-bit, or 2-byte, value.

Currently, the datatype classes of n-bit datatype or n-bit field of a compound datatype or an array data­type are limited to integer or floating-point.

The HDF5 user can create an n-bit datatype through a series of of function calls. For example, the follow­ing calls create a 16-bit datatype that is stored in a 32-bit value with a 4-bit offset:

hid_t nbit_datatype = H5Tcopy(H5T_STD_I32LE);

H5Tset_precision(nbit_datatype, 16);

H5Tset_offset(nbit_datatype, 4);

In memory, one value of the above example n-bit datatype would be stored on a little-endian machine as follows:




	
byte 3


	
byte 2


	
byte 1


	
byte 0





	
????????


	
????SPPP


	
PPPPPPPP


	
PPPP????








Note: Key: S - sign bit, P - significant bit, ? - padding bit. Sign bit is included in signed integer datatype precision.

 

N-bit Filter

When data of an n-bit datatype is stored on disk using the n-bit filter, the filter packs the data by stripping off the padding bits; only the significant bits are retained and stored. The values on disk will appear as fol­lows:




	
1st value


	
2nd value


	
 





	
SPPPPPPP PPPPPPPP


	
SPPPPPPP PPPPPPPP


	
...








Note: Key: S - sign bit, P - significant bit, ? - padding bit. Sign bit is included in signed integer datatype precision.

 

The n-bit filter can be used effectively for compressing data of an n-bit datatype, including arrays and the n-bit fields of compound datatypes. The filter supports complex situations where a compound datatype contains member(s) of a compound datatype or an array datatype has a compound datatype as the base type.

At present, the n-bit filter supports all datatypes. For datatypes of class time, string, opaque, reference, ENUM, and variable-length, the n-bit filter acts as a no-op which is short for no operation. For conve­nience, the rest of this section refers to such datatypes as no-op datatypes.

As is the case with all HDF5 filters, an application using the n-bit filter must store data with chunked stor­age.

How Does the N-bit Filter Work?

The n-bit filter always compresses and decompresses according to dataset properties supplied by the HDF5 Library in the datatype, dataspace, or dataset creation property list.

The dataset datatype refers to how data is stored in an HDF5 file while the memory datatype refers to how data is stored in memory. The HDF5 Library will do datatype conversion when writing data in memory to the dataset or reading data from the dataset to memory if the memory datatype differs from the dataset datatype. Datatype conversion is performed by HDF5 Library before n-bit compression and after n-bit decompression.

The following sub-sections examine the common cases:

•        N-bit integer conversions

•        N-bit floating-point conversions

N-bit Integer Conversions

Integer data with a dataset of integer datatype of less than full precision and a memory datatype of H5T_NATIVE_INT, provides the simplest application of the n-bit filter.

The precision of H5T_NATIVE_INT is 8 multiplied by sizeof(int). This value, the size of an int in bytes, differs from platform to platform; we assume a value of 4 for the following illustration. We further assume the memory byte order to be little-endian.

In memory, therefore, the precision of H5T_NATIVE_INT is 32 and the offset is 0. One value of H5T_NA­TIVE_INT is laid out in memory as follows:



Figure 5-13. H5T_NATIVE_INT in memory

	
[image: Dsets_NbitInteger1.JPG]

 

 








Note: Key: S - sign bit, P - significant bit, ? - padding bit. Sign bit is included in signed integer datatype precision.

Suppose the dataset datatype has a precision of 16 and an offset of 4. After HDF5 converts values from the memory datatype to the dataset datatype, it passes something like the following to the n-bit filter for compression:



Figure 5-14. Passed to the n-bit filter

	
[image: Dsets_NbitInteger2.JPG]

 

 








Note: Key: S - sign bit, P - significant bit, ? - padding bit. Sign bit is included in signed integer datatype precision.

Notice that only the specified 16 bits (15 significant bits and the sign bit) are retained in the conversion. All other significant bits of the memory datatype are discarded because the dataset datatype calls for only 16 bits of precision. After n-bit compression, none of these discarded bits, known as padding bits will be stored on disk.

N-bit Floating-point Conversions

Things get more complicated in the case of a floating-point dataset datatype class. This sub-section pro­vides an example that illustrates the conversion from a memory datatype of H5T_NATIVE_FLOAT to a dataset datatype of class floating-point.

As before, let the H5T_NATIVE_FLOAT be 4 bytes long, and let the memory byte order be little-endian. Per the IEEE standard, one value of H5T_NATIVE_FLOAT is laid out in memory as follows:



Figure 5-15. H5T_NATIVE_FLOAT in memory

	
[image: Dsets_NbitFloating1.JPG]

 

 








Note: Key: S - sign bit, E - exponent bit, M - mantissa bit, ? - padding bit. Sign bit is included in floating-point datatype precision.

Suppose the dataset datatype has a precision of 20, offset of 7, mantissa size of 13, mantissa position of 7, exponent size of 6, exponent position of 20, and sign position of 26. For more information, see "Definition of Datatypes."

After HDF5 converts values from the memory datatype to the dataset datatype, it passes something like the following to the n-bit filter for compression:



Figure 5-16. Passed to the n-bit filter

	
[image: Dsets_NbitFloating2.JPG]

 

 








Note: Key: S - sign bit, E - exponent bit, M - mantissa bit, ? - padding bit. Sign bit is included in floating-point datatype precision.

The sign bit and truncated mantissa bits are not changed during datatype conversion by the HDF5 Library. On the other hand, the conversion of the 8-bit exponent to a 6-bit exponent is a little tricky:

The bias for the new exponent in the n-bit datatype is:

2(n-1)-1

The following formula is used for this exponent conversion:

exp8 - (2(8-1)-1) = exp6 - (2(6-1)-1) = actual exponent value

where exp8 is the stored decimal value as represented by the 8-bit exponent, and exp6 is the stored decimal value as represented by the 6-bit exponent.

In this example, caution must be taken to ensure that, after conversion, the actual exponent value is within the range that can be represented by a 6-bit exponent. For example, an 8-bit exponent can repre­sent values from -127 to 128 while a 6-bit exponent can represent values only from -31 to 32.

N-bit Filter Behavior

The n-bit filter was designed to treat the incoming data byte by byte at the lowest level. The purpose was to make the n-bit filter as generic as possible so that no pointer cast related to the datatype is needed.

Bitwise operations are employed for packing and unpacking at the byte level.

Recursive function calls are used to treat compound and array datatypes.

N-bit Compression

The main idea of n-bit compression is to use a loop to compress each data element in a chunk. Depending on the datatype of each element, the n-bit filter will call one of four functions. Each of these functions per­forms one of the following tasks:

•        Compress a data element of a no-op datatype

•        Compress a data element of an atomic datatype

•        Compress a data element of a compound datatype

•        Compress a data element of an array datatype

No-op datatypes: The n-bit filter does not actually compress no-op datatypes. Rather, it copies the data buffer of the no-op datatype from the non-compressed buffer to the proper location in the compressed buffer; the compressed buffer has no holes. The term “compress” is used here simply to distinguish this function from the function that performs the reverse operation during decompression.

Atomic datatypes: The n-bit filter will find the bytes where significant bits are located and try to compress these bytes, one byte at a time, using a loop. At this level, the filter needs the following information:

•        The byte offset of the beginning of the current data element with respect to the beginning of the input data buffer

•        Datatype size, precision, offset, and byte order

The n-bit filter compresses from the most significant byte containing significant bits to the least significant byte. For big-endian data, therefore, the loop index progresses from smaller to larger while for little-endian, the loop index progresses from larger to smaller.

In the extreme case of when the n-bit datatype has full precision, this function copies the content of the entire non-compressed datatype to the compressed output buffer.

Compound datatypes: The n-bit filter will compress each data member of the compound datatype. If the member datatype is of an integer or floating-point datatype, the n-bit filter will call the function described above. If the member datatype is of a no-op datatype, the filter will call the function described above. If the member datatype is of a compound datatype, the filter will make a recursive call to itself. If the mem­ber datatype is of an array datatype, the filter will call the function described below.

Array datatypes: The n-bit filter will use a loop to compress each array element in the array. If the base datatype of array element is of an integer or floating-point datatype, the n-bit filter will call the function described above. If the base datatype is of a no-op datatype, the filter will call the function described above. If the base datatype is of a compound datatype, the filter will call the function described above. If the member datatype is of an array datatype, the filter will make a recursive call of itself.

N-bit Decompression

The n-bit decompression algorithm is very similar to n-bit compression. The only difference is that at the byte level, compression packs out all padding bits and stores only significant bits into a continuous buffer (unsigned char) while decompression unpacks significant bits and inserts padding bits (zeros) at the proper positions to recover the data bytes as they existed before compression.

Storing N-bit Parameters to Array cd_value[]

All of the information, or parameters, required by the n-bit filter are gathered and stored in the array cd_values[] by the private function H5Z_set_local_nbit and are passed to another private func­tion, H5Z_filter_nbit, by the HDF5 Library.

These parameters are as follows:

•        Parameters related to the datatype

•        The number of elements within the chunk

•        A flag indicating whether compression is needed

The first and second parameters can be obtained using the HDF5 dataspace and datatype interface calls.

A compound datatype can have members of array or compound datatype. An array datatype’s base data­type can be a complex compound datatype. Recursive calls are required to set parameters for these com­plex situations.

Before setting the parameters, the number of parameters should be calculated to dynamically allocate the array cd_values[], which will be passed to the HDF5 Library. This also requires recursive calls.

For an atomic datatype (integer or floating-point), parameters that will be stored include the datatype’s size, endianness, precision, and offset.

For a no-op datatype, only the size is required.

For a compound datatype, parameters that will be stored include the datatype’s total size and number of members. For each member, its member offset needs to be stored. Other parameters for members will depends on the respective datatype class.

For an array datatype, the total size parameter should be stored. Other parameters for the array’s base type depend on the base type’s datatype class.

Further, to correctly retrieve the parameter for use of n-bit compression or decompression later, parame­ters for distinguishing between datatype classes should be stored.

Implementation

Three filter callback functions were written for the n-bit filter:

•        H5Z_can_apply_nbit

•        H5Z_set_local_nbit

•        H5Z_filter_nbit

These functions are called internally by the HDF5 Library. A number of utility functions were written for the function H5Z_set_local_nbit. Compression and decompression functions were written and are called by function H5Z_filter_nbit. All these functions are included in the file H5Znbit.c.

The public function H5Pset_nbit is called by the application to set up the use of the n-bit filter. This function is included in the file H5Pdcpl.c. The application does not need to supply any parameters.

How N-bit Parameters are Stored

A scheme of storing parameters required by the n-bit filter in the array cd_values[] was developed uti­lizing recursive function calls.

Four private utility functions were written for storing the parameters associated with atomic (integer or floating-point), no-op, array, and compound datatypes:

•        H5Z_set_parms_atomic

•        H5Z_set_parms_array

•        H5Z_set_parms_nooptype

•        H5Z_set_parms_compound 

The scheme is briefly described below.

First, assign a numeric code for datatype class atomic (integer or float), no-op, array, and compound data­type. The code is stored before other datatype related parameters are stored.

The first three parameters of cd_values[] are reserved for:

1.      The number of valid entries in the array cd_values[]

2.      A flag indicating whether compression is needed

3.      The number of elements in the chunk

Throughout the balance of this explanation, i represents the index of cd_values[].

In the function H5Z_set_local_nbit:

1.      i = 2

2.      Get the number of elements in the chunk and store in cd_value[i]; increment i

3.      Get the class of the datatype:

•        For an integer or floating-point datatype, call H5Z_set_parms_atomic

•        For an array datatype, call H5Z_set_parms_array

•        For a compound datatype, call H5Z_set_parms_compound

•        For none of the above, call H5Z_set_parms_noopdatatype

4.      Store i in cd_value[0] and flag in cd_values[1]

In the function H5Z_set_parms_atomic:

1.      Store the assigned numeric code for the atomic datatype in cd_value[i]; increment i

2.      Get the size of the atomic datatype and store in cd_value[i]; increment i

3.      Get the order of the atomic datatype and store in cd_value[i]; increment i

4.      Get the precision of the atomic datatype and store in cd_value[i]; increment i

5.      Get the offset of the atomic datatype and store in cd_value[i]; increment i

6.      Determine the need to do compression at this point

In the function H5Z_set_parms_nooptype:

1.      Store the assigned numeric code for the no-op datatype in cd_value[i]; increment i

2.      Get the size of the no-op datatype and store in cd_value[i]; increment i

In the function H5Z_set_parms_array:

1.      Store the assigned numeric code for the array datatype in cd_value[i]; increment i

2.      Get the size of the array datatype and store in cd_value[i]; increment i

3.      Get the class of the array’s base datatype.

•        For an integer or floating-point datatype, call H5Z_set_parms_atomic

•        For an array datatype, call H5Z_set_parms_array

•        For a compound datatype, call H5Z_set_parms_compound

•        If none of the above, call H5Z_set_parms_noopdatatype

In the function H5Z_set_parms_compound:

1.      Store the assigned numeric code for the compound datatype in cd_value[i]; increment i

2.      Get the size of the compound datatype and store in cd_value[i]; increment i

3.      Get the number of members and store in cd_values[i]; increment i

4.      For each member

•        Get the member offset and store in cd_values[i]; increment i

•        Get the class of the member datatype

•        For an integer or floating-point datatype, call H5Z_set_parms_atomic

•        For an array datatype, call H5Z_set_parms_array

•        For a compound datatype, call H5Z_set_parms_compound

•        If none of the above, call H5Z_set_parms_noopdatatype

N-bit Compression and Decompression Functions

The n-bit compression and decompression functions above are called by the private HDF5 function H5Z_­filter_nbit. The compress and decompress functions retrieve the n-bit parameters from cd_val­ues[] as it was passed by H5Z_filter_nbit. Parameters are retrieved in exactly the same order in which they are stored and lower-level compression and decompression functions for different datatype classes are called.

N-bit compression is not implemented in place. Due to the difficulty of calculating actual output buffer size after compression, the same space as that of the input buffer is allocated for the output buffer as passed to the compression function. However, the size of the output buffer passed by reference to the compression function will be changed (smaller) after the compression is complete.

Usage Examples

The following code example illustrates the use of the n-bit filter for writing and reading n-bit integer data.



Code Example 5-10. N-bit compression for integer data

	
#include "hdf5.h"

#include "stdlib.h"

#include "math.h"

#define H5FILE_NAME  "nbit_test_int.h5"

#define DATASET_NAME "nbit_int"

#define NX 200

#define NY 300

#define CH_NX 10

#define CH_NY 15

 





	
int main(void)

{

   hid_t   file, dataspace, dataset, datatype, mem_datatype,

dset_create_props;

   hsize_t dims[2], chunk_size[2];

   int     orig_data[NX][NY];

   int     new_data[NX][NY];

   int     i, j;

   size_t  precision, offset;

 





	
   /* Define dataset datatype (integer), and set precision,

   * offset

   */

   datatype = H5Tcopy(H5T_NATIVE_INT);

   precision = 17; /* precision includes sign bit */

   if(H5Tset_precision(datatype,precision)<0) {

      printf("Error: fail to set precision\n");

      return -1;

   }





	
   offset = 4;

   if(H5Tset_offset(datatype,offset)<0) {

      printf("Error: fail to set offset\n");

      return -1;

   }

 





	
   /* Copy to memory datatype */

   mem_datatype = H5Tcopy(datatype);

 





	
   /* Set order of dataset datatype */

   if(H5Tset_order(datatype, H5T_ORDER_BE)<0) {

      printf("Error: fail to set endianness\n");

      return -1;

   }

 





	
   /* Initialize data buffer with random data within correct

   * range corresponding to the memory datatype's precision

   * and offset.

   */

   for (i=0; i < NX; i++)

      for (j=0; j < NY; j++)

         orig_data[i][j] = rand() % (int)pow(2, precision-1)

               <<offset;

 





	
   /* Describe the size of the array. */

   dims[0] = NX;

   dims[1] = NY;

   if((dataspace = H5Screate_simple (2, dims, NULL))<0) {

      printf("Error: fail to create dataspace\n");

      return -1;

   }





	
 

 

   /*

   * Create a new file using read/write access, default file

   * creation properties, and default file access properties.

   */





	
   if((file = H5Fcreate (H5FILE_NAME, H5F_ACC_TRUNC,

H5P_DEFAULT, H5P_DEFAULT))<0) {

      printf("Error: fail to create file\n");

      return -1;

   }

 

 





	
   /*

   * Set the dataset creation property list to specify that

   * the raw data is to be partitioned into 10 x 15 element

   * chunks and that each chunk is to be compressed.

   */

   chunk_size[0] = CH_NX;

   chunk_size[1] = CH_NY;





	
   if((dset_create_props = H5Pcreate (H5P_DATASET_CREATE))<0) {

      printf("Error: fail to create dataset property\n");

      return -1;

   }

   if(H5Pset_chunk (dset_create_props, 2, chunk_size)<0) {

      printf("Error: fail to set chunk\n");

      return -1;

   }





	
 

   /*

   * Set parameters for n-bit compression; check the description

   * of the H5Pset_nbit function in the HDF5 Reference Manual

   * for more information.

   */





	
   if(H5Pset_nbit (dset_create_props)<0) {

      printf("Error: fail to set nbit filter\n");

      return -1;

   }

 





	
   /*

   * Create a new dataset within the file.  The datatype

   * and dataspace describe the data on disk, which may

   * be different from the format used in the application's

   * memory.

   */





	
   if((dataset = H5Dcreate(file, DATASET_NAME, datatype,

         dataspace, H5P_DEFAULT,

         dset_create_props, H5P_DEFAULT))<0) {

      printf("Error: fail to create dataset\n");

      return -1;

   }

 





	
   /*

   * Write the array to the file. The datatype and dataspace

   * describe the format of the data in the 'orig_data' buffer.

   * The raw data is translated to the format required on disk,

   * as defined above. We use default raw data transfer

   * properties.

   */





	
   if(H5Dwrite (dataset, mem_datatype, H5S_ALL, H5S_ALL,

         H5P_DEFAULT, orig_data)<0) {

      printf("Error: fail to write to dataset\n");

      return -1;

   }

 





	
   H5Dclose (dataset);

 

   if((dataset = H5Dopen(file, DATASET_NAME, H5P_DEFAULT))<0) {

      printf("Error: fail to open dataset\n");

      return -1;

   }





	
 

   /*

   * Read the array. This is similar to writing data,

   * except the data flows in the opposite direction.

   * Note: Decompression is automatic.

   */





	
   if(H5Dread (dataset, mem_datatype, H5S_ALL, H5S_ALL,

         H5P_DEFAULT, new_data)<0) {

      printf("Error: fail to read from dataset\n");

      return -1;

   }





	
 

   H5Tclose (datatype);

   H5Tclose (mem_datatype);

   H5Dclose (dataset);





	
   H5Sclose (dataspace);

   H5Pclose (dset_create_props);

   H5Fclose (file);

 

   return 0;

}








Note: The code example above illustrates the use of the n-bit filter for writing and reading n-bit integer data.

The following code example illustrates the use of the n-bit filter for writing and reading n-bit floating-point data.



Code Example 5-11. N-bit compression for floating-point data

	
#include "hdf5.h"

#define H5FILE_NAME  "nbit_test_float.h5"

#define DATASET_NAME "nbit_float"

#define NX 2

#define NY 5

#define CH_NX 2

#define CH_NY 5





	
 

int main(void)

{

   hid_t   file, dataspace, dataset, datatype, dset_create_props;

   hsize_t dims[2], chunk_size[2];

   /* orig_data[] are initialized to be within the range that

   * can be represented by dataset datatype (no precision

   * loss during datatype conversion)

   */





	
   float   orig_data[NX][NY] = {{188384.00, 19.103516,

   -1.0831790e9, -84.242188, 5.2045898}, {-49140.000,

   2350.2500, -3.2110596e-1,    6.4998865e-5, -0.0000000}};

   float   new_data[NX][NY];

   size_t  precision, offset;





	
   

   /* Define single-precision floating-point type for dataset

   *---------------------------------------------------------------

   * size=4 byte, precision=20 bits, offset=7 bits,

   * mantissa size=13 bits, mantissa position=7,





	
   * exponent size=6 bits, exponent position=20,

   * exponent bias=31.

   * It can be illustrated in little-endian order as:

   * (S - sign bit, E - exponent bit, M - mantissa bit,

   *  ? - padding bit)

   *





	
   *      3            2            1         0

   * ?????SEE EEEEMMMM MMMMMMMM M???????

   *





	
   * To create a new floating-point type, the following

   * properties must be set in the order of

   * set fields -> set offset -> set precision -> set size.





	
   * All these properties must be set before the type can

   * function. Other properties can be set anytime. Derived

   * type size cannot be expanded bigger than original size

   * but can be decreased. There should be no holes

   * among the significant bits. Exponent bias usually

   * is set 2^(n-1)-1, where n is the exponent size.

   *---------------------------------------------------------------*/

 





	
   datatype = H5Tcopy(H5T_IEEE_F32BE);

   if(H5Tset_fields(datatype, 26, 20, 6, 7, 13)<0) {

      printf("Error: fail to set fields\n");

      return -1;

   }





	
   offset = 7;

   if(H5Tset_offset(datatype,offset)<0) {

      printf("Error: fail to set offset\n");

      return -1;

   }





	
   precision = 20;

   if(H5Tset_precision(datatype,precision)<0) {

      printf("Error: fail to set precision\n");

      return -1;

   }





	
   if(H5Tset_size(datatype, 4)<0) {

      printf("Error: fail to set size\n");

      return -1;

   }

   if(H5Tset_ebias(datatype, 31)<0) {

      printf("Error: fail to set exponent bias\n");

      return -1;

   }





	
 

   /* Describe the size of the array. */

   dims[0] = NX;

   dims[1] = NY;

   if((dataspace = H5Screate_simple (2, dims, NULL))<0) {

      printf("Error: fail to create dataspace\n");

      return -1;

   }





	
   /*

   * Create a new file using read/write access, default file

   * creation properties, and default file access properties.

   */





	
   if((file = H5Fcreate (H5FILE_NAME, H5F_ACC_TRUNC,

         H5P_DEFAULT, H5P_DEFAULT))<0) {

      printf("Error: fail to create file\n");

      return -1;

   }





	
 

   /*

   * Set the dataset creation property list to specify that

   * the raw data is to be partitioned into 2 x 5 element

   * chunks and that each chunk is to be compressed.

   */





	
   chunk_size[0] = CH_NX;

   chunk_size[1] = CH_NY;

   if((dset_create_props = H5Pcreate (H5P_DATASET_CREATE))<0) {

      printf("Error: fail to create dataset property\n");

      return -1;

   }





	
   if(H5Pset_chunk (dset_create_props, 2, chunk_size)<0) {

      printf("Error: fail to set chunk\n");

      return -1;

   }

   





	
   /*

   * Set parameters for n-bit compression; check the description

   * of the H5Pset_nbit function in the HDF5 Reference Manual

   * for more information.

   */

   if(H5Pset_nbit (dset_create_props)<0) {

      printf("Error: fail to set nbit filter\n");

      return -1;

   }





	
   

   

   /*

   * Create a new dataset within the file. The datatype

   * and dataspace describe the data on disk, which may

   * be different from the format used in the application's

   * memory.

   */





	
   if((dataset = H5Dcreate(file, DATASET_NAME, datatype,

         dataspace, H5P_DEFAULT,

         dset_create_plists, H5P_DEFAULT))<0) {

      printf("Error: fail to create dataset\n");

      return -1;

   }

 





	
   /*

   * Write the array to the file. The datatype and dataspace

   * describe the format of the data in the 'orig_data' buffer.

   * The raw data is translated to the format required on disk,

   * as defined above. We use default raw data transfer

   * properties.

   */

 





	
   if(H5Dwrite (dataset, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL,

         H5P_DEFAULT, orig_data)<0) {

      printf("Error: fail to write to dataset\n");

      return -1;

   }

 





	
   H5Dclose (dataset);

   

   if((dataset = H5Dopen(file, DATASET_NAME, H5P_DEFAULT))<0) {

      printf("Error: fail to open dataset\n");

      return -1;

   }

   





	
   /*

   * Read the array. This is similar to writing data,

   * except the data flows in the opposite direction.

   * Note: Decompression is automatic.

   */





	
   if(H5Dread (dataset, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL,

         H5P_DEFAULT, new_data)<0) {

      printf("Error: fail to read from dataset\n");

      return -1;

   }

   





	
   H5Tclose (datatype);

   H5Dclose (dataset);

   H5Sclose (dataspace);

   H5Pclose (dset_create_props);

   H5Fclose (file);

   

   return 0;

}








Note: The code example above illustrates the use of the n-bit filter for writing and reading n-bit floating-point data.

Limitations

Because the array cd_values[] has to fit into an object header message of 64K, the n-bit filter has an upper limit on the number of n-bit parameters that can be stored in it. To be conservative, a maximum of 4K is allowed for the number of parameters.

The n-bit filter currently only compresses n-bit datatypes or fields derived from integer or floating-point datatypes. The n-bit filter assumes padding bits of zero. This may not be true since the HDF5 user can set padding bit to be zero, one, or leave the background alone. However, it is expected the n-bit filter will be modified to adjust to such situations.

The n-bit filter does not have a way to handle the situation where the fill value of a dataset is defined and the fill value is not of an n-bit datatype although the dataset datatype is.

5.5.2. Using the Scale-offset Filter

Generally speaking, scale-offset compression performs a scale and/or offset operation on each data value and truncates the resulting value to a minimum number of bits (minimum-bits) before storing it.

The current scale-offset filter supports integer and floating-point datatypes only. For the floating-point datatype, float and double are supported, but long double is not supported.

Integer data compression uses a straight-forward algorithm. Floating-point data compression adopts the GRiB data packing mechanism which offers two alternate methods: a fixed minimum-bits method, and a variable minimum-bits method. Currently, only the variable minimum-bits method is implemented.

Like other I/O filters supported by the HDF5 Library, applications using the scale-offset filter must store data with chunked storage.

Integer type: The minimum-bits of integer data can be determined by the filter. For example, if the maxi­mum value of data to be compressed is 7065 and the minimum value is 2970. Then the “span” of dataset values is equal to (max-min+1), which is 4676. If no fill value is defined for the dataset, the minimum-bits is: ceiling(log2(span)) = 12. With fill value set, the minimum-bits is: ceiling(log2(span+1)) = 13.

HDF5 users can also set the minimum-bits. However, if the user gives a minimum-bits that is less than that calculated by the filter, the compression will be lossy.

Floating-point type: The basic idea of the scale-offset filter for the floating-point type is to transform the data by some kind of scaling to integer data, and then to follow the procedure of the scale-offset filter for the integer type to do the data compression. Due to the data transformation from floating-point to inte­ger, the scale-offset filter is lossy in nature.

Two methods of scaling the floating-point data are used: the so-called D-scaling and E-scaling. D-scaling is more straightforward and easy to understand. For HDF5 1.8 release, only the D-scaling method has been implemented.

Design

Before the filter does any real work, it needs to gather some information from the HDF5 Library through API calls. The parameters the filter needs are:

•        The minimum-bits of the data value

•        The number of data elements in the chunk

•        The datatype class, size, sign (only for integer type), byte order, and fill value if defined

Size and sign are needed to determine what kind of pointer cast to use when retrieving values from the data buffer.

The pipeline of the filter can be divided into four parts: (1)pre-compression; (2)compression; (3)decom­pression; (4)post-decompression.

Depending on whether a fill value is defined or not, the filter will handle pre-compression and post-decompression differently.

The scale-offset filter only needs the memory byte order, size of datatype, and minimum-bits for compres­sion and decompression.

Since decompression has no access to the original data, the minimum-bits and the minimum value need to be stored with the compressed data for decompression and post-decompression.

Integer Type

Pre-compression: During pre-compression minimum-bits is calculated if it is not set by the user. For more information on how minimum-bits are calculated, see section 6.1. “The N-bit Filter.”

If the fill value is defined, finding the maximum and minimum values should ignore the data element whose value is equal to the fill value.

If no fill value is defined, the value of each data element is subtracted by the minimum value during this stage.

If the fill value is defined, the fill value is assigned to the maximum value. In this way minimum-bits can represent a data element whose value is equal to the fill value and subtracts the minimum value from a data element whose value is not equal to the fill value.

The fill value (if defined), the number of elements in a chunk, the class of the datatype, the size of the datatype, the memory order of the datatype, and other similar elements will be stored in the HDF5 object header for the post-decompression usage.

After pre-compression, all values are non-negative and are within the range that can be stored by mini­mum-bits.

Compression: All modified data values after pre-compression are packed together into the compressed data buffer. The number of bits for each data value decreases from the number of bits of integer (32 for most platforms) to minimum-bits. The value of minimum-bits and the minimum value are added to the data buffer and the whole buffer is sent back to the library. In this way, the number of bits for each modi­fied value is no more than the size of minimum-bits.

Decompression: In this stage, the number of bits for each data value is resumed from minimum-bits to the number of bits of integer.

Post-decompression: For the post-decompression stage, the filter does the opposite of what it does during pre-compression except that it does not calculate the minimum-bits or the minimum value. These values were saved during compression and can be retrieved through the resumed data buffer. If no fill value is defined, the filter adds the minimum value back to each data element.

If the fill value is defined, the filter assigns the fill value to the data element whose value is equal to the maximum value that minimum-bits can represent and adds the minimum value back to each data element whose value is not equal to the maximum value that minimum-bits can represent.

Floating-point Type

The filter will do data transformation from floating-point type to integer type and then handle the data by using the procedure for handling the integer data inside the filter. Insignificant bits of floating-point data will be cut off during data transformation, so this filter is a lossy compression method.

There are two scaling methods: D-scaling and E-scaling. The HDF5 1.8 release only supports D-scaling. D-scaling is short for decimal scaling. E-scaling should be similar conceptually. In order to transform data from floating-point to integer, a scale factor is introduced. The minimum value will be calculated. Each data element value will subtract the minimum value. The modified data will be multiplied by 10 (Decimal) to the power of scale_factor, and only the integer part will be kept and manipulated through the rou­tines for the integer type of the filter during pre-compression and compression. Integer data will be divided by 10 to the power of scale_factor to transform back to floating-point data during decompres­sion and post-decompression. Each data element value will then add the minimum value, and the floating-point data are resumed. However, the resumed data will lose some insignificant bits compared with the original value.

For example, the following floating-point data are manipulated by the filter, and the D-scaling factor is 2.

{104.561, 99.459, 100.545, 105.644}

The minimum value is 99.459, each data element subtracts 99.459, the modified data is

{5.102, 0, 1.086, 6.185}

Since the D-scaling factor is 2, all floating-point data will be multiplied by 10^2 with this result:

{510.2, 0, 108.6, 618.5}

The digit after decimal point will be rounded off, and then the set looks like:

{510, 0, 109, 619}

After decompression, each value will be divided by 10^2 and will be added to the offset 99.459.

The floating-point data becomes

{104.559, 99.459, 100.549, 105.649}.

The relative error for each value should be no more than 5* (10^(D-scaling factor +1)). D-scaling some­times is also referred as a variable minimum-bits method since for different datasets the minimum-bits to represent the same decimal precision will vary. The data value is modified to 2 to power of scale_fac­tor for E-scaling. E-scaling is also called fixed-bits method since for different datasets the minimum-bits will always be fixed to the scale factor of E-scaling. Currently, HDF5 ONLY supports the D-scaling (variable minimum-bits) method.

Implementation

The scale-offset filter implementation was written and included in the file H5Zscaleoffset.c. Function H5Pset_scaleoffset was written and included in the file “H5Pdcpl.c”. The HDF5 user can supply minimum-bits by calling function H5Pset_scaleoffset.

The scale-offset filter was implemented based on the design outlined in this section. However, the follow­ing factors need to be considered:

1.      The filter needs the appropriate cast pointer whenever it needs to retrieve data values.

2.      The HDF5 Library passes to the filter the to-be-compressed data in the format of the dataset data­type, and the filter passes back the decompressed data in the same format. If a fill value is defined, it is also in dataset datatype format. For example, if the byte order of the dataset data­type is different from that of the memory datatype of the platform, compression or decompres­sion performs an endianness conversion of data buffer. Moreover, it should be aware that memory byte order can be different during compression and decompression.

3.      The difference of endianness and datatype between file and memory should be considered when saving and retrieval of minimum-bits, minimum value, and fill value.

4.      If the user sets the minimum-bits to full precision of the datatype, no operation is needed at the filter side. If the full precision is a result of calculation by the filter, then the minimum-bits needs to be saved for decompression but no compression or decompression is needed (only a copy of the input buffer is needed).

5.      If by calculation of the filter, the minimum-bits is equal to zero, special handling is needed. Since it means all values are the same, no compression or decompression is needed. But the minimum-bits and minimum value still need to be saved during compression.

6.      For floating-point data, the minimum value of the dataset should be calculated at first. Each data element value will then subtract the minimum value to obtain the “offset” data. The offset data will then follow the steps outlined above in the discussion of floating-point types to do data trans­formation to integer and rounding. For more information, see "Floating-point Type."

Usage Examples

The following code example illustrates the use of the scale-offset filter for writing and reading integer data.



Code Example 5-12. Scale-offset compression integer data

	
#include "hdf5.h"

#include "stdlib.h"

#define H5FILE_NAME  "scaleoffset_test_int.h5"

#define DATASET_NAME "scaleoffset_int"

#define NX 200

#define NY 300

#define CH_NX 10

#define CH_NY 15

 





	
int main(void)

{

   hid_t   file, dataspace, dataset, datatype, dset_create_props;

   hsize_t dims[2], chunk_size[2];

   int     orig_data[NX][NY];

   int     new_data[NX][NY];   

   int     i, j, fill_val;   

   





	
   /* Define dataset datatype */

   datatype = H5Tcopy(H5T_NATIVE_INT);   

   

   /* Initiliaze data buffer */

   for (i=0; i < NX; i++)

      for (j=0; j < NY; j++)

         orig_data[i][j] = rand() % 10000;

   





	
   /* Describe the size of the array. */

   dims[0] = NX;

   dims[1] = NY;

   if((dataspace = H5Screate_simple (2, dims, NULL))<0) {

      printf("Error: fail to create dataspace\n");

      return -1;

   }

   





	
   /*

   * Create a new file using read/write access, default file

   * creation properties, and default file access properties.

   */

   if((file = H5Fcreate (H5FILE_NAME, H5F_ACC_TRUNC,

         H5P_DEFAULT, H5P_DEFAULT))<0) {

      printf("Error: fail to create file\n");

      return -1;

   }

 





	
   /*

   * Set the dataset creation property list to specify that

   * the raw data is to be partitioned into 10 x 15 element

   * chunks and that each chunk is to be compressed.

   */

   chunk_size[0] = CH_NX;

   chunk_size[1] = CH_NY;





	
   if((dset_create_props = H5Pcreate (H5P_DATASET_CREATE))<0) {

      printf("Error: fail to create dataset property\n");

      return -1;

   }

   if(H5Pset_chunk (dset_create_props, 2, chunk_size)<0) {

      printf("Error: fail to set chunk\n");

      return -1;

   }





	
   

   /* Set the fill value of dataset */

   fill_val = 10000;

   if (H5Pset_fill_value(dset_create_props, H5T_NATIVE_INT,

         &fill_val)<0) {

      printf("Error: can not set fill value for dataset\n");

      return -1;

   }

   





	
   /*

   * Set parameters for scale-offset compression. Check the

   * description of the H5Pset_scaleoffset function in the

   * HDF5 Reference Manual for more information [3].

   */





	
   if(H5Pset_scaleoffset (dset_create_props, H5Z_SO_INT,

         H5Z_SO_INT_MINIMUMBITS_DEFAULT)<0) {

      printf("Error: fail to set scaleoffset filter\n");

      return -1;

   }

 





	
   /*

   * Create a new dataset within the file. The datatype

   * and dataspace describe the data on disk, which may

   * or may not be different from the format used in the

   * application's memory. The link creation and

   * dataset access property list parameters are passed

   * with default values.

   */





	
   if((dataset = H5Dcreate (file, DATASET_NAME, datatype,

         dataspace, H5P_DEFAULT,

         dset_create_props, H5P_DEFAULT))<0) {

      printf("Error: fail to create dataset\n");

      return -1;

   }

 





	
   /*

   * Write the array to the file. The datatype and dataspace

   * describe the format of the data in the 'orig_data' buffer.

   * We use default raw data transfer properties.

   */





	
   if(H5Dwrite (dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

         H5P_DEFAULT, orig_data)<0) {

      printf("Error: fail to write to dataset\n");

      return -1;

   }

   

   H5Dclose (dataset);

   





	
   if((dataset = H5Dopen(file, DATASET_NAME, H5P_DEFAULT))<0) {

      printf("Error: fail to open dataset\n");

      return -1;

   }

 





	
   /*

   * Read the array. This is similar to writing data,

   * except the data flows in the opposite direction.

   * Note: Decompression is automatic.

   */





	
   if(H5Dread (dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

         H5P_DEFAULT, new_data)<0) {

      printf("Error: fail to read from dataset\n");

      return -1;

   }

 





	
   H5Tclose (datatype);

   H5Dclose (dataset);

   H5Sclose (dataspace);

   H5Pclose (dset_create_props);

   H5Fclose (file);

   

   return 0;

}








Note: The code example above illustrates the use of the scale-offset filter for writing and reading integer data.

The following code example illustrates the use of the scale-offset filter (set for variable minimum-bits method) for writing and reading floating-point data.



Code Example 5-13. Scale-offset compression floating-point data

	
#include "hdf5.h"

#include "stdlib.h"

#define H5FILE_NAME  "scaleoffset_test_float_Dscale.h5"

#define DATASET_NAME "scaleoffset_float_Dscale"

#define NX 200

#define NY 300

#define CH_NX 10

#define CH_NY 15

 





	
int main(void)

{

   hid_t   file, dataspace, dataset, datatype, dset_create_props;

   hsize_t dims[2], chunk_size[2];

   float   orig_data[NX][NY];

   float   new_data[NX][NY];

   float   fill_val;   

   int     i, j;   

   





	
   /* Define dataset datatype */

   datatype = H5Tcopy(H5T_NATIVE_FLOAT);   

   

   /* Initiliaze data buffer */

   for (i=0; i < NX; i++)

      for (j=0; j < NY; j++)

         orig_data[i][j] = (rand() % 10000) / 1000.0;





	
   

   /* Describe the size of the array. */

   dims[0] = NX;

   dims[1] = NY;

   if((dataspace = H5Screate_simple (2, dims, NULL))<0) {

      printf("Error: fail to create dataspace\n");

      return -1;

   }





	
   

   /*

   * Create a new file using read/write access, default file

   * creation properties, and default file access properties.

   */





	
   if((file = H5Fcreate (H5FILE_NAME, H5F_ACC_TRUNC,

         H5P_DEFAULT, H5P_DEFAULT))<0) {

      printf("Error: fail to create file\n");

      return -1;

   }

 





	
   /*

   * Set the dataset creation property list to specify that

   * the raw data is to be partitioned into 10 x 15 element

   * chunks and that each chunk is to be compressed.

   */

   chunk_size[0] = CH_NX;

   chunk_size[1] = CH_NY;





	
   if((dset_create_props = H5Pcreate (H5P_DATASET_CREATE))<0) {

      printf("Error: fail to create dataset property\n");

      return -1;

   }

   if(H5Pset_chunk (dset_create_props, 2, chunk_size)<0) {

      printf("Error: fail to set chunk\n");

      return -1;

   }





	
   

   /* Set the fill value of dataset */

   fill_val = 10000.0;

   if (H5Pset_fill_value(dset_create_props, H5T_NATIVE_FLOAT,

         &fill_val)<0) {

      printf("Error: can not set fill value for dataset\n");

      return -1;

   }





	
   

   /*

   * Set parameters for scale-offset compression; use variable

   * minimum-bits method, set decimal scale factor to 3. Check

   * the description of the H5Pset_scaleoffset function in the

   * HDF5 Reference Manual for more information [3].

   */





	
   if(H5Pset_scaleoffset (dset_create_props, H5Z_SO_FLOAT_DSCALE,

         3)<0)    {

      printf("Error: fail to set scaleoffset filter\n");

      return -1;

   }

   





	
   /*

   * Create a new dataset within the file. The datatype

   * and dataspace describe the data on disk, which may

   * or may not be different from the format used in the

   * application's memory.

   */





	
   if((dataset = H5Dcreate (file, DATASET_NAME, datatype,

         dataspace, H5P_DEFAULT,

         dset_create_props, H5P_DEFAULT))<0) {

      printf("Error: fail to create dataset\n");

      return -1;

 





	
   }

   

 





	
   

   /*

   * Write the array to the file. The datatype and dataspace

   * describe the format of the data in the 'orig_data' buffer.

   * We use default raw data transfer properties.

   */





	
   if(H5Dwrite (dataset, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL,

         H5P_DEFAULT, orig_data)<0) {

      printf("Error: fail to write to dataset\n");

      return -1;

   }

   

   H5Dclose (dataset);





	
   

   if((dataset = H5Dopen(file, DATASET_NAME, H5P_DEFAULT))<0) {

      printf("Error: fail to open dataset\n");

      return -1;

   }   

   





	
   /*

   * Read the array. This is similar to writing data,

   * except the data flows in the opposite direction.

   * Note: Decompression is automatic.

   */





	
   if(H5Dread (dataset, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL,

         H5P_DEFAULT, new_data)<0) {

      printf("Error: fail to read from dataset\n");

      return -1;

   }

   





	
   H5Tclose (datatype);

   H5Dclose (dataset);

   H5Sclose (dataspace);

   H5Pclose (dset_create_props);

   H5Fclose (file);

   

   return 0;

}








Note: The code example above illustrates the use of the scale-offset filter for writing and reading floating-point data.

Limitations

For floating-point data handling, there are some algorithmic limitations to the GRiB data packing mecha­nism:

1.      Both the E-scaling and D-scaling methods are lossy compression

2.      For the D-scaling method, since data values have been rounded to integer values (positive) before truncating to the minimum-bits, their range is limited by the maximum value that can be repre­sented by the corresponding unsigned integer type (the same size as that of the floating-point type)

Suggestions

The following are some suggestions for using the filter for floating-point data:

1.      It is better to convert the units of data so that the units are within certain common range (for example, 1200m to 1.2km)

2.      If data values to be compressed are very near to zero, it is strongly recommended that the user sets the fill value away from zero (for example, a large positive number); if the user does nothing, the HDF5 Library will set the fill value to zero, and this may cause undesirable compression results

3.      Users are not encouraged to use a very large decimal scale factor (for example, 100) for the D-scaling method; this can cause the filter not to ignore the fill value when finding maximum and minimum values, and they will get a much larger minimum-bits (poor compression)

5.5.3. Using the Szip Filter

See The HDF Group website for further information regarding the Szip filter.

 




6. HDF5 Datatypes

6.1. Introduction and Definitions

An HDF5 dataset is an array of data elements, arranged according to the specifications of the dataspace. In general, a data element is the smallest addressable unit of storage in the HDF5 file. (Compound datatypes are the exception to this rule.) The HDF5 datatype defines the storage format for a single data element. See the figure below.

The model for HDF5 attributes is extremely similar to datasets: an attribute has a dataspace and a data­type, as shown in the figure below. The information in this chapter applies to both datasets and attributes.



Figure 6-1. Datatypes, dataspaces, and datasets

	
[image: Dtypes_fig1.JPG]

 

 








 

Abstractly, each data element within the dataset is a sequence of bits, interpreted as a single value from a set of values (for example, a number or a character). For a given datatype, there is a standard or conven­tion for representing the values as bits, and when the bits are represented in a particular storage the bits are laid out in a specific storage scheme such as 8-bit bytes with a specific ordering and alignment of bytes within the storage array.

HDF5 datatypes implement a flexible, extensible, and portable mechanism for specifying and discovering the storage layout of the data elements, determining how to interpret the elements (for example, as float­ing point numbers), and for transferring data from different compatible layouts.

 

An HDF5 datatype describes one specific layout of bits. A dataset has a single datatype which applies to every data element. When a dataset is created, the storage datatype is defined. After the dataset or attri­bute is created, the datatype cannot be changed.

•        The datatype describes the storage layout of a single data element

•        All elements of the dataset must have the same type

•        The datatype of a dataset is immutable

When data is transferred (for example, a read or write), each end point of the transfer has a datatype, which describes the correct storage for the elements. The source and destination may have different (but compatible) layouts, in which case the data elements are automatically transformed during the transfer.

HDF5 datatypes describe commonly used binary formats for numbers (integers and floating point) and characters (ASCII). A given computing architecture and programming language supports certain number and character representations. For example, a computer may support 8-, 16-, 32-, and 64-bit signed inte­gers, stored in memory in little-endian byte order. These would presumably correspond to the C program­ming language types ‘char’, ‘short’, ‘int’, and ‘long’.

When reading and writing from memory, the HDF5 library must know the appropriate datatype that describes the architecture specific layout. The HDF5 library provides the platform independent ‘NATIVE’ types, which are mapped to an appropriate datatype for each platform. So the type ‘H5T_NATIVE_INT’ is an alias for the appropriate descriptor for each platform.

Data in memory has a datatype:

•        The storage layout in memory is architecture-specific

•        The HDF5 ‘NATIVE’ types are predefined aliases for the architecture-specific memory layout

•        The memory datatype need not be the same as the stored datatype of the dataset

In addition to numbers and characters, an HDF5 datatype can describe more abstract classes of types including enumerations, strings, bit strings, and references (pointers to objects in the HDF5 file). HDF5 supports several classes of composite datatypes which are combinations of one or more other datatypes. In addition to the standard predefined datatypes, users can define new datatypes within the datatype classes.

The HDF5 datatype model is very general and flexible:

•        For common simple purposes, only predefined types will be needed

•        Datatypes can be combined to create complex structured datatypes

•        If needed, users can define custom atomic datatypes

•        Committed datatypes can be shared by datasets or attributes

 

6.2. HDF5 Datatype Model

The HDF5 Library implements an object-oriented model of datatypes. HDF5 datatypes are organized as a logical set of base types, or datatype classes. Each datatype class defines a format for representing logical values as a sequence of bits. For example the H5T_INTEGER class is a format for representing twos com­plement integers of various sizes.

A datatype class is defined as a set of one or more datatype properties. A datatype property is a property of the bit string. The datatype properties are defined by the logical model of the datatype class. For exam­ple, the integer class (twos complement integers) has properties such as “signed or unsigned”, “length”, and “byte-order”. The float class (IEEE floating point numbers) has these properties, plus “exponent bits”, “exponent sign”, etc.

A datatype is derived from one datatype class: a given datatype has a specific value for the datatype prop­erties defined by the class. For example, for 32-bit signed integers, stored big-endian, the HDF5 datatype is a sub-type of integer with the properties set to signed=1, size=4 (bytes), and byte-order=BE.

The HDF5 datatype API (H5T functions) provides methods to create datatypes of different datatype classes, to set the datatype properties of a new datatype, and to discover the datatype properties of an existing datatype.

The datatype for a dataset is stored in the HDF5 file as part of the metadata for the dataset.

A datatype can be shared by more than one dataset in the file if the datatype is saved to the file with a name. This shareable datatype is known as a committed datatype. In the past, this kind of datatype was called a named datatype.

When transferring data (for example, a read or write), the data elements of the source and destination storage must have compatible types. As a general rule, data elements with the same datatype class are compatible while elements from different datatype classes are not compatible. When transferring data of one datatype to another compatible datatype, the HDF5 Library uses the datatype properties of the source and destination to automatically transform each data element. For example, when reading from data stored as 32-bit signed integers, big-endian into 32-bit signed integers, little-endian, the HDF5 Library will automatically swap the bytes.

Thus, data transfer operations (H5Dread, H5Dwrite, H5Aread, H5Awrite) require a datatype for both the source and the destination.



Figure 6-2. The datatype model

	
[image: Dtypes_fig2.JPG]

 

 








 

The HDF5 Library defines a set of predefined datatypes, corresponding to commonly used storage for­mats, such as twos complement integers, IEEE Floating point numbers, etc., 4- and 8-byte sizes, big-endian and little-endian byte orders. In addition, a user can derive types with custom values for the properties. For example, a user program may create a datatype to describe a 6-bit integer, or a 600-bit floating point number.

In addition to atomic datatypes, the HDF5 Library supports composite datatypes. A composite datatype is an aggregation of one or more datatypes. Each class of composite datatypes has properties that describe the organization of the composite datatype. See the figure below. Composite datatypes include:

•        Compound datatypes: structured records

•        Array: a multidimensional array of a datatype

•        Variable-length: a one-dimensional array of a datatype



Figure 6-3. Composite datatypes

	
[image: Dtypes_fig3.JPG]

 

 








 

6.2.1. Datatype Classes and Properties

The figure below shows the HDF5 datatype classes. Each class is defined to have a set of properties which describe the layout of the data element and the interpretation of the bits. The table below lists the prop­erties for the datatype classes.



Figure 6-4. Datatype classes

	
[image: Dtypes_fig4.JPG]

 

 








 



Table 6-1. Datatype classes and their properties

 	
Class


 	
Description


 	
Properties


 	
Notes





	
Integer


	
Twos complement integers


	
Size (bytes), precision (bits), offset (bits), pad, byte order, signed/unsigned


	
 





	
Float


	
Floating Point numbers


	
Size (bytes), precision (bits), offset (bits), pad, byte order, sign position, exponent position, expo­nent size (bits), exponent sign, exponent bias, man­tissa position, mantissa (size) bits, mantissa sign, mantissa normalization, internal padding


	
See IEEE 754 for a defini­tion of these properties. These properties describe non-IEEE 754 floating point formats as well.





	
Character


	
Array of 1-byte character encoding


	
Size (characters), Charac­ter set, byte order, pad/no pad, pad character


	
Currently, ASCII and UTF-8 are supported.





	
Bitfield


	
String of bits


	
Size (bytes), precision (bits), offset (bits), pad, byte order


	
A sequence of bit values packed into one or more bytes.





	
Opaque


	
Uninterpreted data


	
Size (bytes), precision (bits), offset (bits), pad, byte order, tag


	
A sequence of bytes, stored and retrieved as a block. The ‘tag’ is a string that can be used to label the value.





	
Enumeration


	
A list of discrete values, with sym­bolic names in the form of strings.


	
Number of elements, ele­ment names, element val­ues


	
Enumeration is a list of pairs, (name, value). The name is a string, the value is an unsigned integer.





	
Reference


	
Reference to object or region within the HDF5 file


	
 


	
See the Reference API, H5R





	
Array


	
Array (1-4 dimen­sions) of data ele­ments


	
Number of dimensions, dimension sizes, base datatype


	
The array is accessed atomically: no selection or sub-setting.





	
Variable-length


	
A variable-length 1-dimensional array of data ele­ments


	
Current size, base type


	
 





	
Compound


	
A Datatype of a sequence of Data­types


	
Number of members, member names, member types, member offset, member class, member size, byte order


	
 








 

6.2.2. Predefined Datatypes

The HDF5 Library predefines a modest number of commonly used datatypes. These types have standard symbolic names of the form H5T_arch_base where arch is an architecture name and base is a pro­gramming type name (Table 2). New types can be derived from the predefined types by copying the pre­defined type (see H5Tcopy()) and then modifying the result.

The base name of most types consists of a letter to indicate the class (Table 3), a precision in bits, and an indication of the byte order (Table 4).

Table 5 shows examples of predefined datatypes. The full list can be found in the “HDF5 Predefined Data­types” section of the HDF5 Reference Manual.



Table 6-2. Architectures used in predefined datatypes

 	
Architecture Name


 	
Description





	
IEEE


	
IEEE-754 standard floating point types in various byte orders.





	
STD


	
This is an architecture that contains semi-standard datatypes like signed two’s complement integers, unsigned integers, and bitfields in various byte orders.





	
C

FORTRAN


	
Types which are specific to the C or Fortran programming languages are defined in these architectures. For instance, H5T_C_S1 defines a base string type with null termination which can be used to derive string types of other lengths.





	
NATIVE


	
This architecture contains C-like datatypes for the machine on which the library was compiled. The types were actually defined by running the H5detect program when the library was compiled. In order to be portable, applications should almost always use this architecture to describe things in memory.





	
CRAY


	
Cray architectures. These are word-addressable, big-endian systems with non-IEEE floating point.





	
INTEL


	
All Intel and compatible CPU’s including 80286, 80386, 80486, Pen­tium, Pentium-Pro, and Pentium-II. These are little-endian systems with IEEE floating-point.





	
MIPS


	
All MIPS CPU’s commonly used in SGI systems. These are big-endian systems with IEEE floating-point.





	
ALPHA


	
All DEC Alpha CPU’s, little-endian systems with IEEE floating-point.










Table 6-3. Base types

 	
B


 	
Bitfield





	
F


	
Floating point





	
I


	
Signed integer





	
R


	
References





	
S


	
Character string





	
U


	
Unsigned integer










Table 6-4. Byte order

 	
BE


 	
Big-endian





	
LE


	
Little-endian










Table 6-5. Some predefined datatypes

 	
Example


 	
Description





	
H5T_IEEE_F64LE


	
Eight-byte, little-endian, IEEE floating-point    





	
H5T_IEEE_F32BE


	
Four-byte, big-endian, IEEE floating point    





	
H5T_STD_I32LE


	
Four-byte, little-endian, signed two’s complement integer    





	
H5T_STD_U16BE


	
Two-byte, big-endian, unsigned integer    





	
H5T_C_S1


	
One-byte, null-terminated string of eight-bit characters    





	
H5T_INTEL_B64


	
Eight-byte bit field on an Intel CPU    





	
H5T_CRAY_F64


	
Eight-byte Cray floating point    





	
H5T_STD_ROBJ


	
Reference to an entire object in a file    








 

The HDF5 Library predefines a set of NATIVE datatypes which are similar to C type names. The native types are set to be an alias for the appropriate HDF5 datatype for each platform. For example, H5T_NA­TIVE_INT corresponds to a C int type. On an Intel based PC, this type is the same as H5T_STD_I32LE, while on a MIPS system this would be equivalent to H5T_STD_I32BE. Table 6 shows examples of NATIVE types and corresponding C types for a common 32-bit workstation.



Table 6-6. Native and 32-bit C datatypes

 	
Example


 	
Corresponding C Type





	
H5T_NATIVE_CHAR


	
char





	
H5T_NATIVE_SCHAR


	
signed char





	
H5T_NATIVE_UCHAR


	
unsigned char





	
H5T_NATIVE_SHORT


	
short





	
H5T_NATIVE_USHORT


	
unsigned short





	
H5T_NATIVE_INT


	
int





	
H5T_NATIVE_UINT


	
unsigned





	
H5T_NATIVE_LONG


	
long





	
H5T_NATIVE_ULONG


	
unsigned long





	
H5T_NATIVE_LLONG


	
long long





	
H5T_NATIVE_ULLONG


	
unsigned long long





	
H5T_NATIVE_FLOAT


	
float





	
H5T_NATIVE_DOUBLE


	
double





	
H5T_NATIVE_LDOUBLE


	
long double





	
H5T_NATIVE_HSIZE


	
hsize_t





	
H5T_NATIVE_HSSIZE


	
hssize_t





	
H5T_NATIVE_HERR


	
herr_t





	
H5T_NATIVE_HBOOL


	
hbool_t





	
H5T_NATIVE_B8


	
8-bit unsigned integer or 8-bit buffer in memory





	
H5T_NATIVE_B16


	
16-bit unsigned integer or 16-bit buffer in memory





	
H5T_NATIVE_B32


	
32-bit unsigned integer or 32-bit buffer in memory





	
H5T_NATIVE_B64


	
64-bit unsigned integer or 64-bit buffer in memory    








 

6.3. How Datatypes are Used

6.3.1. The Datatype Object and the HDF5 Datatype API

The HDF5 Library manages datatypes as objects. The HDF5 datatype API manipulates the datatype objects through C function calls. New datatypes can be created from scratch or copied from existing datatypes. When a datatype is no longer needed its resources should be released by calling H5Tclose().

The datatype object is used in several roles in the HDF5 data model and library. Essentially, a datatype is used whenever the format of data elements is needed. There are four major uses of datatypes in the HDF5 Library: at dataset creation, during data transfers, when discovering the contents of a file, and for specify­ing user-defined datatypes. See the table below.



Table 6-7. Datatype uses

 	
Use


 	
Description





	
Dataset creation


	
The datatype of the data elements must be declared when the dataset is created.





	
Data transfer


	
The datatype (format) of the data elements must be defined for both the source and destination.





	
Discovery


	
The datatype of a dataset can be interrogated to retrieve a complete description of the storage layout.





	
Creating user-defined datatypes


	
Users can define their own datatypes by creating datatype objects and setting their properties.    








 

6.3.2. Dataset Creation

All the data elements of a dataset have the same datatype. When a dataset is created, the datatype for the data elements must be specified. The datatype of a dataset can never be changed. The example below shows the use of a datatype to create a dataset called “/dset”. In this example, the dataset will be stored as 32-bit signed integers in big-endian order.



Code Example 6-1. Using a datatype to create a dataset

	
hid_t dt;

dt = H5Tcopy(H5T_STD_I32BE);

dataset_id = H5Dcreate(file_id, “/dset”, dt, dataspace_id,   

H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);








 

6.3.3. Data Transfer (Read and Write)

Probably the most common use of datatypes is to write or read data from a dataset or attribute. In these operations, each data element is transferred from the source to the destination (possibly rearranging the order of the elements). Since the source and destination do not need to be identical (in other words, one is disk and the other is memory), the transfer requires both the format of the source element and the des­tination element. Therefore, data transfers use two datatype objects, for the source and destination.

When data is written, the source is memory and the destination is disk (file). The memory datatype describes the format of the data element in the machine memory, and the file datatype describes the desired format of the data element on disk. Similarly, when reading, the source datatype describes the format of the data element on disk, and the destination datatype describes the format in memory.

In the most common cases, the file datatype is the datatype specified when the dataset was created, and the memory datatype should be the appropriate NATIVE type.

The examples below show samples of writing data to and reading data from a dataset. The data in mem­ory is declared C type ‘int’, and the datatype H5T_NATIVE_INT corresponds to this type. The datatype of the dataset should be of datatype class H5T_INTEGER.



Code Example 6-2. Writing to a dataset

	
int  dset_data[DATA_SIZE];

 

status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

H5P_DEFAULT, dset_data);










Code Example 6-3. Reading from a dataset

	
int dset_data[DATA_SIZE];

 

status = H5Dread(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

H5P_DEFAULT, dset_data);








 

6.3.4. Discovery of Data Format

The HDF5 Library enables a program to determine the datatype class and properties for any datatype. In order to discover the storage format of data in a dataset, the datatype is obtained, and the properties are determined by queries to the datatype object. The example below shows code that analyzes the datatype for an integer and prints out a description of its storage properties (byte order, signed, size).



Code Example 6-4. Discovering datatype properties

	
switch (H5Tget_class(type)) {

case H5T_INTEGER:

ord = H5Tget_order(type);

sgn = H5Tget_sign(type);

printf(“Integer ByteOrder= ”);

switch (ord) {

 





	
case H5T_ORDER_LE:

printf(“LE”);

break;

case H5T_ORDER_BE:

printf(“BE”);

break;

}





	
printf(“ Sign= ”);

switch (sgn) {

case H5T_SGN_NONE:

printf(“false”);

break;

case H5T_SGN_2:

printf(“true”);

break;

}





	
printf(“ Size= ”);

sz = H5Tget_size(type);

printf(“%d”, sz);

printf(“\n”);

break;








 

6.3.5. Creating and Using User-defined Datatypes

Most programs will primarily use the predefined datatypes described above, possibly in composite data­types such as compound or array datatypes. However, the HDF5 datatype model is extremely general; a user program can define a great variety of atomic datatypes (storage layouts). In particular, the datatype properties can define signed and unsigned integers of any size and byte order, and floating point numbers with different formats, size, and byte order. The HDF5 datatype API provides methods to set these proper­ties.

User-defined types can be used to define the layout of data in memory; examples might include to match some platform specific number format or application defined bit-field. The user-defined type can also describe data in the file such as an application-defined format. The user-defined types can be translated to and from standard types of the same class, as described above.

6.4. Datatype (H5T) Function Summaries

Functions that can be used with datatypes (H5T functions) and property list functions that can be used with datatypes (H5P functions) are listed below.



Function Listing 6-1. General datatype operations

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Tcreate

h5tcreate_f


	
Creates a new datatype.





	
H5Topen

h5topen_f


	
Opens a committed datatype. The C function is a macro: see “API Compatibility Macros in HDF5.”





	
H5Tcommit

h5tcommit_f


	
Commits a transient datatype to a file. The datatype is now a committed datatype. The C function is a macro: see “API Compatibility Macros in HDF5.”





	
H5Tcommit_anon

h5tcommit_anon_f


	
Commits a transient datatype to a file. The datatype is now a committed datatype, but it is not linked into the file structure.





	
H5Tcommitted

h5tcommitted_f


	
Determines whether a datatype is a commit­ted or a transient type.





	
H5Tcopy

h5tcopy_f


	
Copies an existing datatype.





	
H5Tequal

h5tequal_f


	
Determines whether two datatype identifiers refer to the same datatype.





	
H5Tlock

(no Fortran subroutine)


	
Locks a datatype.





	
H5Tget_class

h5tget_class_f


	
Returns the datatype class identifier.





	
H5Tget_create_plist

h5tget_create_plist_f


	
Returns a copy of a datatype creation prop­erty list.





	
H5Tget_size

h5tget_size_f


	
Returns the size of a datatype.





	
H5Tget_super

h5tget_super_f


	
Returns the base datatype from which a data­type is derived.





	
H5Tget_native_type

h5tget_native_type_f


	
Returns the native datatype of a specified datatype.





	
H5Tdetect_class

(no Fortran subroutine)


	
Determines whether a datatype is of the given datatype class.





	
H5Tget_order

h5tget_order_f


	
Returns the byte order of a datatype.





	
H5Tset_order

h5tset_order_f


	
Sets the byte ordering of a datatype.





	
H5Tdecode

h5tdecode_f


	
Decode a binary object description of data­type and return a new object identifier.





	
H5Tencode

h5tencode


	
 Encode a datatype object description into a binary buffer.





	
H5Tclose

h5tclose_f


	
Releases a datatype.










Function Listing 6-2. Conversion functions

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Tconvert

h5tconvert_f


	
Converts data between specified datatypes.





	
H5Tcompiler_conv

h5tcompiler_conv_f


	
Check whether the library’s default conver­sion is hard conversion.





	
H5Tfind

(no Fortran subroutine)


	
Finds a conversion function.





	
H5Tregister

(no Fortran subroutine)


	
Registers a conversion function.





	
H5Tunregister

(no Fortran subroutine)


	
Removes a conversion function from all con­version paths.










Function Listing 6-3. Atomic datatype properties

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Tset_size

h5tset_size_f


	
Sets the total size for an atomic datatype.





	
H5Tget_precision

h5tget_precision_f


	
Returns the precision of an atomic datatype.





	
H5Tset_precision

h5tset_precision_f


	
Sets the precision of an atomic datatype.





	
H5Tget_offset

h5tget_offset_f


	
Retrieves the bit offset of the first significant bit.





	
H5Tset_offset

h5tset_offset_f


	
Sets the bit offset of the first significant bit.





	
H5Tget_pad

h5tget_pad_f


	
Retrieves the padding type of the least and most-significant bit padding.





	
H5Tset_pad

h5tset_pad_f


	
Sets the least and most-significant bits pad­ding types.





	
H5Tget_sign

h5tget_sign_f


	
Retrieves the sign type for an integer type.





	
H5Tset_sign

h5tset_sign_f


	
Sets the sign property for an integer type.





	
H5Tget_fields

h5tget_fields_f


	
Retrieves floating point datatype bit field information.





	
H5Tset_fields

h5tset_fields_f


	
Sets locations and sizes of floating point bit fields.





	
H5Tget_ebias

h5tget_ebias_f


	
Retrieves the exponent bias of a floating-point type.





	
H5Tset_ebias

h5tset_ebias_f


	
Sets the exponent bias of a floating-point type.





	
H5Tget_norm

h5tget_norm_f


	
Retrieves mantissa normalization of a float­ing-point datatype.





	
H5Tset_norm

h5tset_norm_f


	
Sets the mantissa normalization of a floating-point datatype.





	
H5Tget_inpad

h5tget_inpad_f


	
Retrieves the internal padding type for unused bits in floating-point datatypes.





	
H5Tset_inpad

h5tset_inpad_f


	
Fills unused internal floating point bits.





	
H5Tget_cset

h5tget_cset_f


	
Retrieves the character set type of a string datatype.





	
H5Tset_cset

h5tset_cset_f


	
Sets character set to be used.





	
H5Tget_strpad

h5tget_strpad_f


	
Retrieves the storage mechanism for a string datatype.





	
H5Tset_strpad

h5tset_strpad_f


	
Defines the storage mechanism for character strings.










Function Listing 6-4. Enumeration datatypes

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Tenum_create

h5tenum_create_f


	
Creates a new enumeration datatype.





	
H5Tenum_insert

h5tenum_insert_f


	
Inserts a new enumeration datatype member.





	
H5Tenum_nameof

h5tenum_nameof_f


	
Returns the symbol name corresponding to a specified member of an enumeration data­type.





	
H5Tenum_valueof

h5tenum_valueof_f


	
Returns the value corresponding to a speci­fied member of an enumeration datatype.





	
H5Tget_member_value

h5tget_member_value_f


	
Returns the value of an enumeration data­type member.





	
H5Tget_nmembers

h5tget_nmembers_f


	
Retrieves the number of elements in a com­pound or enumeration datatype.





	
H5Tget_member_name

h5tget_member_name_f


	
Retrieves the name of a compound or enu­meration datatype member.





	
H5Tget_member_index

(no Fortran subroutine)


	
Retrieves the index of a compound or enu­meration datatype member.










Function Listing 6-5. Compound datatype properties

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Tget_nmembers

h5tget_nmembers_f


	
Retrieves the number of elements in a com­pound or enumeration datatype.





	
H5Tget_member_class

h5tget_member_class_f


	
Returns datatype class of compound datatype member.





	
H5Tget_member_name

h5tget_member_name_f


	
Retrieves the name of a compound or enu­meration datatype member.





	
H5Tget_member_index

h5tget_member_index_f


	
Retrieves the index of a compound or enu­meration datatype member.





	
H5Tget_member_offset

h5tget_member_offset_f


	
Retrieves the offset of a field of a compound datatype.





	
H5Tget_member_type

h5tget_member_type_f


	
Returns the datatype of the specified mem­ber.





	
H5Tinsert

h5tinsert_f


	
Adds a new member to a compound data­type.





	
H5Tpack

h5tpack_f


	
Recursively removes padding from within a compound datatype.










Function Listing 6-6. Array datatypes

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Tarray_create

h5tarray_create_f


	
Creates an array datatype object. The C func­tion is a macro: see “API Compatibility Macros in HDF5.”





	
H5Tget_array_ndims

h5tget_array_ndims_f


	
Returns the rank of an array datatype.





	
H5Tget_array_dims

h5tget_array_dims_f


	
Returns sizes of array dimensions and dimen­sion permutations. The C function is a macro: see “API Compatibility Macros in HDF5.”










Function Listing 6-7. Variable-length datatypes

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Tvlen_create

h5tvlen_create_f


	
Creates a new variable-length datatype.





	
H5Tis_variable_str

h5tis_variable_str_f


	
Determines whether datatype is a variable-length string.










Function Listing 6-8. Opaque datatypes

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Tset_tag

h5tset_tag_f


	
Tags an opaque datatype.





	
H5Tget_tag

h5tget_tag_f


	
Gets the tag associated with an opaque data­type.










Function Listing 6-9. Conversions between datatype and text

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5LTtext_to_dtype

(no Fortran subroutine)


	
Creates a datatype from a text description.





	
H5LTdtype_to_text

(no Fortran subroutine)


	
Generates a text description of a datatype.










Function Listing 6-10. Datatype creation property list functions (H5P)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Pset_char_encoding

h5pset_char_encoding_f


	
Sets the character encoding used to encode a string. Use to set ASCII or UTF-8 character encoding for object names.





	
H5Pget_char_encoding

h5pget_char_encoding_f


	
Retrieves the character encoding used to cre­ate a string.










Function Listing 6-11. Datatype access property list functions (H5P)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Pset_type_conv_cb

(no Fortran subroutine)


	
Sets user-defined datatype conversion call­back function.





	
H5Pget_type_conv_cb

(no Fortran subroutine)


	
Gets user-defined datatype conversion call­back function.








 

6.5. Programming Model for Datatypes

The HDF5 Library implements an object-oriented model of datatypes. HDF5 datatypes are organized as a logical set of base types, or datatype classes. The HDF5 Library manages datatypes as objects. The HDF5 datatype API manipulates the datatype objects through C function calls. The figure below shows the abstract view of the datatype object. The table below shows the methods (C functions) that operate on datatype objects. New datatypes can be created from scratch or copied from existing datatypes.



Figure 6-5. The datatype object

	
[image: Dtypes_fig5.JPG]

 

 










Table 6-8. General operations on datatype objects

 	
API Function


 	
Description





	
hid_t H5Tcreate (H5T_class_t class, size_t size)


	
Create a new datatype object of datatype class class. The following datatype classes are supported with this function:

•        H5T_COMPOUND

•        H5T_OPAQUE

•        H5T_ENUM

Other datatypes are created with H5Tcopy().





	
hid_t H5Tcopy (hid_t type)


	
Obtain a modifiable transient datatype which is a copy of type. If type is a data­set identifier then the type returned is a modifiable transient copy of the datatype of the specified dataset.





	
hid_t H5Topen (hid_t location, const char *name, H5P_DEFAULT)


	
Open a committed datatype. The commit­ted datatype returned by this function is read-only.





	
htri_t H5Tequal (hid_t type1, hid_t type2)


	
Determines if two types are equal.





	
herr_t H5Tclose (hid_t type)


	
Releases resources associated with a data­type obtained from H5Tcopy, H5Topen, or H5Tcreate. It is illegal to close an immutable transient datatype (for exam­ple, predefined types).





	
herr_t H5Tcommit (hid_t location, const char *name, hid_t type, H5P_DE­FAULT, H5P_DEFAULT, H5P_DEFAULT)


	
Commit a transient datatype (not immutable) to a file to become a commit­ted datatype. Committed datatypes can be shared.





	
htri_t H5Tcommitted (hid_t type)


	
Test whether the datatype is transient or committed (named).





	
herr_t H5Tlock (hid_t type)


	
Make a transient datatype immutable (read-only and not closable). Predefined types are locked.








 

In order to use a datatype, the object must be created (H5Tcreate), or a reference obtained by cloning from an existing type (H5Tcopy), or opened (H5Topen). In addition, a reference to the datatype of a data­set or attribute can be obtained with H5Dget_type or H5Aget_type. For composite datatypes a refer­ence to the datatype for members or base types can be obtained (H5Tget_member_type, H5Tget_super). When the datatype object is no longer needed, the reference is discarded with H5Tclose.

Two datatype objects can be tested to see if they are the same with H5Tequal. This function returns true if the two datatype references refer to the same datatype object. However, if two datatype objects define equivalent datatypes (the same datatype class and datatype properties), they will not be considered ‘equal’.

A datatype can be written to the file as a first class object (H5Tcommit). This is a committed datatype and can be used in the same way as any other datatype.

6.5.1. Discovery of Datatype Properties

Any HDF5 datatype object can be queried to discover all of its datatype properties. For each datatype class, there are a set of API functions to retrieve the datatype properties for this class.

6.5.1.1. Properties of Atomic Datatypes

Table 9 lists the functions to discover the properties of atomic datatypes. Table 10 lists the queries rele­vant to specific numeric types. Table 11 gives the properties for atomic string datatype, and Table 12 gives the property of the opaque datatype.



Table 6-9. Functions to discover properties of atomic datatypes

 	
Functions


 	
Description





	
H5T_class_t H5Tget_class (hid_t type)


	
The datatype class: H5T_INTEGER, H5T_FLOAT, H5T_STRING, H5T_BIT­FIELD, H5T_OPAQUE, H5T_COMPOUND, H5T_REFERENCE, H5T_ENUM, H5T_VLEN, H5T_ARRAY





	
size_t H5Tget_size (hid_t type)


	
The total size of the element in bytes, including padding which may appear on either side of the actual value.





	
H5T_order_t H5Tget_order (hid_t type)


	
The byte order describes how the bytes of the datatype are laid out in memory. If the lowest memory address contains the least significant byte of the datum then it is said to be little-endian or H5T_ORDER_LE. If the bytes are in the opposite order then they are said to be big-endian or H5T_ORDER_BE.





	
size_t H5Tget_precision (hid_t type)


	
The precision property identifies the number of significant bits of a datatype and the offset property (defined below) identifies its location. Some datatypes occupy more bytes than what is needed to store the value. For instance, a short on a Cray is 32 significant bits in an eight-byte field.





	
int H5Tget_offset (hid_t type)


	
The offset property defines the bit loca­tion of the least significant bit of a bit field whose length is precision.





	
herr_t H5Tget_pad (hid_t type, H5T_pad_t *lsb, H5T_pad_t *msb)


	
Padding is the bits of a data element which are not significant as defined by the precision and offset properties. Pad­ding in the low-numbered bits is lsb pad­ding and padding in the high-numbered bits is msb padding. Padding bits can be set to zero (H5T_PAD_ZERO) or one (H5T_PAD_ONE).








 



Table 6-10. Functions to discover properties of atomic numeric datatypes

 	
Functions


 	
Description





	
H5T_sign_t H5Tget_sign (hid_t type)


	
(INTEGER) Integer data can be signed two’s complement (H5T_SGN_2) or unsigned (H5T_SGN_NONE).





	
herr_t H5Tget_fields (hid_t type, size_t *spos, size_t *epos, size_t *esize, size_t *mpos, size_t *msize)


	
(FLOAT) A floating-point data element has bit fields which are the exponent and mantissa as well as a mantissa sign bit. These properties define the location (bit position of least significant bit of the field) and size (in bits) of each field. The sign bit is always of length one and none of the fields are allowed to overlap.





	
size_t H5Tget_ebias (hid_t type)


	
(FLOAT) The exponent is stored as a non-negative value which is ebias larger than the true exponent.





	
H5T_norm_t H5Tget_norm (hid_t type)


	
(FLOAT) This property describes the nor­malization method of the mantissa.

•        H5T_NORM_MSBSET: the mantissa is shifted left (if non-zero) until the first bit after the radix point is set and the exponent is adjusted accordingly. All bits of the man­tissa after the radix point are stored.

•        H5T_NORM_IMPLIED: the man­tissa is shifted left \ (if non-zero) until the first bit after the radix point is set and the exponent is adjusted accordingly. The first bit after the radix point is not stored since it’s always set.

•        H5T_NORM_NONE: the fractional part of the mantissa is stored without normalizing it.





	
H5T_pad_t H5Tget_inpad (hid_t type)


	
(FLOAT) If any internal bits (that is, bits between the sign bit, the mantissa field, and the exponent field but within the pre­cision field) are unused, then they will be filled according to the value of this prop­erty. The padding can be: H5T_PAD_­NONE, H5T_PAD_ZERO, or H5T_PAD_ONE.    








 



Table 6-11. Functions to discover properties of atomic string datatypes

 	
Functions


 	
Description





	
H5T_cset_t H5Tget_cset (hid_t type)


	
Two character sets are currently sup­ported: ASCII (H5T_CSET_ASCII) and UTF-8 (H5T_CSET_UTF8).





	
H5T_str_t H5Tget_strpad (hid_t type)


	
The string datatype has a fixed length, but the string may be shorter than the length. This property defines the storage mecha­nism for the left over bytes. The options are: H5T_STR_NULLTERM, H5T_STR_NULLPAD, or H5T_STR_SPACEPAD.










Table 6-12. Functions to discover properties of atomic opaque datatypes

 	
Functions


 	
Description





	
char *H5Tget_tag(hid_t type_id)


	
A user-defined string.    








 

6.5.1.2. Properties of Composite Datatypes

The composite datatype classes can also be analyzed to discover their datatype properties and the data­types that are members or base types of the composite datatype. The member or base type can, in turn, be analyzed. The table below lists the functions that can access the datatype properties of the different composite datatypes.



Table 6-13. Functions to discover properties of composite datatypes

 	
Functions


 	
Description





	
int H5Tget_nmembers(hid_t type_id)


	
(COMPOUND) The number of fields in the compound datatype.





	
H5T_class_t H5Tget_member_class (hid_t cdtype_id, unsigned member_no)


	
(COMPOUND) The datatype class of com­pound datatype member member_no.





	
char * H5Tget_member_name (hid_t type_id, unsigned field_idx)


	
(COMPOUND) The name of field field_idx of a compound datatype.





	
size_t H5Tget_member_offset (hid_t type_id, unsigned memb_no)


	
(COMPOUND) The byte offset of the beginning of a field within a compound datatype.





	
hid_t H5Tget_member_type (hid_t type_id, unsigned field_idx)


	
(COMPOUND) The datatype of the speci­fied member.





	
int H5Tget_array_ndims (hid_t adtype_id)


	
(ARRAY) The number of dimensions (rank) of the array datatype object.





	
int H5Tget_array_dims (hid_t adtype_id, hsize_t *dims[])


	
(ARRAY) The sizes of the dimensions and the dimension permutations of the array datatype object.





	
hid_t H5Tget_super(hid_t type)


	
(ARRAY, VL, ENUM) The base datatype from which the datatype type is derived.





	
herr_t H5Tenum_nameof(hid_t type void *value, char *name, size_t size)


	
(ENUM) The symbol name that corre­sponds to the specified value of the enu­meration datatype.





	
herr_t H5Tenum_valueof(hid_t type char *name, void *value)


	
(ENUM) The value that corresponds to the specified name of the enumeration datatype.





	
herr_t H5Tget_member_value (hid_t type unsigned memb_no, void *value)


	
(ENUM) The value of the enumeration datatype member memb_no.








 

6.5.2. Definition of Datatypes

The HDF5 Library enables user programs to create and modify datatypes. The essential steps are:

1.      Create a new datatype object of a specific composite datatype class, or copy an existing atomic datatype object

2.      Set properties of the datatype object

3.      Use the datatype object

4.      Close the datatype object

To create a user-defined atomic datatype, the procedure is to clone a predefined datatype of the appropri­ate datatype class (H5Tcopy), and then set the datatype properties appropriate to the datatype class. The table below shows how to create a datatype to describe a 1024-bit unsigned integer.



Code Example 6-5. Create a new datatype

	
hid_t new_type = H5Tcopy (H5T_NATIVE_INT);

H5Tset_precision(new_type, 1024);

H5Tset_sign(new_type, H5T_SGN_NONE);








 

Composite datatypes are created with a specific API call for each datatype class. The table below shows the creation method for each datatype class. A newly created datatype cannot be used until the datatype properties are set. For example, a newly created compound datatype has no members and cannot be used.



Table 6-14. Functions to create each datatype class

 	
Datatype Class


 	
Function to Create





	
COMPOUND


	
H5Tcreate





	
OPAQUE


	
H5Tcreate





	
ENUM


	
H5Tenum_create





	
ARRAY


	
H5Tarray_create





	
VL


	
H5Tvlen_create    








 

Once the datatype is created and the datatype properties set, the datatype object can be used.

Predefined datatypes are defined by the library during initialization using the same mechanisms as described here. Each predefined datatype is locked (H5Tlock), so that it cannot be changed or destroyed. User-defined datatypes may also be locked using H5Tlock.

6.5.2.1. User-defined Atomic Datatypes

Table 15 summarizes the API methods that set properties of atomic types. Table 16 shows properties spe­cific to numeric types, Table 17 shows properties specific to the string datatype class. Note that offset, pad, etc. do not apply to strings. Table 18 shows the specific property of the OPAQUE datatype class.



Table 6-15. API methods that set properties of atomic datatypes

 	
Functions


 	
Description





	
herr_t H5Tset_size (hid_t type, size_t size)


	
Set the total size of the element in bytes. This includes padding which may appear on either side of the actual value. If this property is reset to a smaller value which would cause the significant part of the data to extend beyond the edge of the datatype, then the offset property is dec­remented a bit at a time. If the offset reaches zero and the significant part of the data still extends beyond the edge of the datatype then the precision property is decremented a bit at a time. Decreasing the size of a datatype may fail if the H5T_FLOAT bit fields would extend beyond the significant part of the type.





	
herr_t H5Tset_order (hid_t type, H5T_order_t order)


	
Set the byte order to little-endian (H5T_ORDER_LE) or big-endian (H5T_ORDER_BE).





	
herr_t H5Tset_precision (hid_t type, size_t precision)


	
Set the number of significant bits of a datatype. The offset property (defined below) identifies its location. The size property defined above represents the entire size (in bytes) of the datatype. If the precision is decreased then padding bits are inserted on the MSB side of the signif­icant bits (this will fail for H5T_FLOAT types if it results in the sign, mantissa, or exponent bit field extending beyond the edge of the significant bit field). On the other hand, if the precision is increased so that it “hangs over” the edge of the total size then the offset property is decre­mented a bit at a time. If the offset reaches zero and the significant bits still hang over the edge, then the total size is increased a byte at a time.





	
herr_t H5Tset_offset (hid_t type, size_t offset)


	
Set the bit location of the least significant bit of a bit field whose length is preci­sion. The bits of the entire data are num­bered beginning at zero at the least significant bit of the least significant byte (the byte at the lowest memory address for a little-endian type or the byte at the highest address for a big-endian type). The offset property defines the bit loca­tion of the least significant bit of a bit field whose length is precision. If the offset is increased so the significant bits “hang over” the edge of the datum, then the size property is automatically incre­mented.





	
herr_t H5Tset_pad (hid_t type, H5T_pad_t lsb, H5T_pad_t msb)


	
Set the padding to zeros (H5T_PAD_ZERO) or ones (H5T_PAD_ONE). Padding is the bits of a data element which are not sig­nificant as defined by the precision and offset properties. Padding in the low-numbered bits is lsb padding and pad­ding in the high-numbered bits is msb padding.     










Table 6-16. API methods that set properties of numeric datatypes

 	
Functions


 	
Description





	
herr_t H5Tset_sign (hid_t type, H5T_sign_t sign)


	
(INTEGER) Integer data can be signed two’s complement (H5T_SGN_2) or unsigned (H5T_SGN_NONE).





	
herr_t H5Tset_fields (hid_t type, size_t spos, size_t epos, size_t esize, size_t mpos, size_t msize)


	
(FLOAT) Set the properties define the location (bit position of least significant bit of the field) and size (in bits) of each field. The sign bit is always of length one and none of the fields are allowed to overlap.





	
herr_t H5Tset_ebias (hid_t type, size_t ebias)


	
(FLOAT) The exponent is stored as a non-negative value which is ebias larger than the true exponent.





	
herr_t H5Tset_norm (hid_t type, H5T_norm_t norm)


	
(FLOAT) This property describes the nor­malization method of the mantissa.

•        H5T_NORM_MSBSET: the mantissa is shifted left (if non-zero) until the first bit after the radix point is set and the exponent is adjusted accordingly. All bits of the man­tissa after the radix point are stored.

•        H5T_NORM_IMPLIED: the man­tissa is shifted left (if non-zero) until the first bit after the radix point is set and the exponent is adjusted accordingly. The first bit after the radix point is not stored since it is always set.

•        H5T_NORM_NONE: the fractional part of the mantissa is stored without normalizing it.





	
herr_t H5Tset_inpad (hid_t type, H5T_pad_t inpad)


	
(FLOAT) If any internal bits (that is, bits between the sign bit, the mantissa field, and the exponent field but within the pre­cision field) are unused, then they will be filled according to the value of this prop­erty. The padding can be: H5T_PAD_­NONE, H5T_PAD_ZERO or H5T_PAD_ONE.    










Table 6-17. API methods that set properties of string datatypes

 	
Functions


 	
Description





	
herr_t H5Tset_size (hid_t type, size_t size)


	
Set the length of the string, in bytes. The precision is automatically set to 8*size.





	
herr_t H5Tset_precision (hid_t type, size_t precision)


	
The precision must be a multiple of 8.





	
herr_t H5Tset_cset (hid_t type_id, H5T_cset_t cset)


	
Two character sets are currently sup­ported: ASCII (H5T_CSET_ASCII) and UTF-8 (H5T_CSET_UTF8).





	
herr_t H5Tset_strpad (hid_t type_id, H5T_str_t strpad)


	
The string datatype has a fixed length, but the string may be shorter than the length. This property defines the storage mecha­nism for the left over bytes. The method used to store character strings differs with the programming language:

•        C usually null terminates strings

•        Fortran left-justifies and space-pads strings

Valid string padding values, as passed in the parameter strpad, are as follows:

•        H5T_STR_NULLTERM: Null termi­nate (as C does)

•        H5T_STR_NULLPAD: Pad with zeros

•        H5T_STR_SPACEPAD: Pad with spaces (as FORTRAN does)










Table 6-18. API methods that set properties of opaque datatypes

 	
Functions


 	
Description





	
herr_t H5Tset_tag (hid_t type_id const char *tag)


	
Tags the opaque datatype type_id with an ASCII identifier tag.








 

Examples

The example below shows how to create a 128-bit little-endian signed integer type. Increasing the preci­sion of a type automatically increases the total size. Note that the proper procedure is to begin from a type of the intended datatype class which in this case is a NATIVE INT.



Code Example 6-6. Create a new 128-bit little-endian signed integer datatype

	
hid_t new_type = H5Tcopy (H5T_NATIVE_INT);

H5Tset_precision (new_type, 128);

H5Tset_order (new_type, H5T_ORDER_LE);








 

The figure below shows the storage layout as the type is defined. The H5Tcopy creates a datatype that is the same as H5T_NATIVE_INT. In this example, suppose this is a 32-bit big-endian number (Figure a). The precision is set to 128 bits, which automatically extends the size to 8 bytes (Figure b). Finally, the byte order is set to little-endian (Figure c).



Figure 6-6. The storage layout for a new 128-bit little-endian signed integer datatype

	
[image: Dtypes_fig6.JPG]

 

 








 

The significant bits of a data element can be offset from the beginning of the memory for that element by an amount of padding. The offset property specifies the number of bits of padding that appear to the “right of” the value. The table and figure below show how a 32-bit unsigned integer with 16-bits of preci­sion having the value 0x1122 will be laid out in memory.



Table 6-19. Memory Layout for a 32-bit unsigned integer

 	
Byte Position


 	
Big-Endian Offset=0


 	
Big-Endian Offset=16


 	
Little-Endian Offset=0


 	
Little-Endian Offset=16





	
0:


	
[pad]


	
[0x11]


	
[0x22]


	
[pad]





	
1:


	
[pad]


	
[0x22]


	
[0x11]


	
[pad]





	
2:


	
[0x11]


	
[pad]


	
[pad]


	
[0x22]





	
3:


	
[0x22]


	
[pad]


	
[pad]


	
[0x11]








 



Figure 6-7. Memory Layout for a 32-bit unsigned integer

	
[image: Dtypes_fig7.JPG]

 

 








 

If the offset is incremented then the total size is incremented also if necessary to prevent significant bits of the value from hanging over the edge of the datatype.

The bits of the entire data are numbered beginning at zero at the least significant bit of the least signifi­cant byte (the byte at the lowest memory address for a little-endian type or the byte at the highest address for a big-endian type). The offset property defines the bit location of the least significant bit of a bit field whose length is precision. If the offset is increased so the significant bits “hang over” the edge of the datum, then the size property is automatically incremented.

To illustrate the properties of the integer datatype class, the example below shows how to create a user-defined datatype that describes a 24-bit signed integer that starts on the third bit of a 32-bit word. The datatype is specialized from a 32-bit integer, the precision is set to 24 bits, and the offset is set to 3.



Code Example 6-7. A user-defined datatype with a 24-bit signed integer

	
hid_t dt;

 

dt = H5Tcopy(H5T_SDT_I32LE);

 

H5Tset_precision(dt, 24);

H5Tset_offset(dt,3);

H5Tset_pad(dt, H5T_PAD_ZERO, H5T_PAD_ONE);








 

The figure below shows the storage layout for a data element. Note that the unused bits in the offset will be set to zero and the unused bits at the end will be set to one, as specified in the H5Tset_pad call.



Figure 6-8. A user-defined integer datatype with a range of -1,048,583 to 1,048,584

	
[image: Dtypes_fig8.JPG]

 

 








 

To illustrate a user-defined floating point number, the example below shows how to create a 24-bit float­ing point number that starts 5 bits into a 4 byte word. The floating point number is defined to have a man­tissa of 19 bits (bits 5-23), an exponent of 3 bits (25-27), and the sign bit is bit 28. (Note that this is an illustration of what can be done and is not necessarily a floating point format that a user would require.)



Code Example 6-8. A user-defined 24-bit floating point datatype

	
hid_t dt;

 

dt = H5Tcopy(H5T_IEEE_F32LE);

 

H5Tset_precision(dt, 24);

H5Tset_fields (dt, 28, 25, 3, 5, 19);

H5Tset_pad(dt, H5T_PAD_ZERO, H5T_PAD_ONE);

H5Tset_inpad(dt, H5T_PAD_ZERO);










Figure 6-9. A user-defined floating point datatype

	
[image: Dtypes_fig9.JPG]

 

 








 

The figure above shows the storage layout of a data element for this datatype. Note that there is an unused bit (24) between the mantissa and the exponent. This bit is filled with the inpad value which in this case is 0.

The sign bit is always of length one and none of the fields are allowed to overlap. When expanding a float­ing-point type one should set the precision first; when decreasing the size one should set the field posi­tions and sizes first.

6.5.2.2. Composite Datatypes

All composite datatypes must be user-defined; there are no predefined composite datatypes.

6.5.2.2.1. Compound Datatypes

The subsections below describe how to create a compound datatype and how to write and read data of a compound datatype.

Defining Compound Datatypes

Compound datatypes are conceptually similar to a C struct or Fortran derived types. The compound data­type defines a contiguous sequence of bytes, which are formatted using one up to 2^16 datatypes (mem­bers). A compound datatype may have any number of members, in any order, and the members may have any datatype, including compound. Thus, complex nested compound datatypes can be created. The total size of the compound datatype is greater than or equal to the sum of the size of its members, up to a max­imum of 2^32 bytes. HDF5 does not support datatypes with distinguished records or the equivalent of C unions or Fortran EQUIVALENCE statements.

Usually a C struct or Fortran derived type will be defined to hold a data point in memory, and the offsets of the members in memory will be the offsets of the struct members from the beginning of an instance of the struct. The HDF5 C library provides a macro HOFFSET (s,m) to calculate the member’s offset. The HDF5 Fortran applications have to calculate offsets by using sizes of members datatypes and by taking in consideration the order of members in the Fortran derived type.

HOFFSET(s,m)

This macro computes the offset of member m within a struct s

offsetof(s,m)

This macro defined in stddef.h does exactly the same thing as the HOFFSET() macro.

Note for Fortran users: Offsets of Fortran structure members correspond to the offsets within a packed datatype (see explanation below) stored in an HDF5 file.

Each member of a compound datatype must have a descriptive name which is the key used to uniquely identify the member within the compound datatype. A member name in an HDF5 datatype does not nec­essarily have to be the same as the name of the member in the C struct or Fortran derived type, although this is often the case. Nor does one need to define all members of the C struct or Fortran derived type in the HDF5 compound datatype (or vice versa).

Unlike atomic datatypes which are derived from other atomic datatypes, compound datatypes are created from scratch. First, one creates an empty compound datatype and specifies its total size. Then members are added to the compound datatype in any order. Each member type is inserted at a designated offset. Each member has a name which is the key used to uniquely identify the member within the compound datatype.

The example below shows a way of creating an HDF5 C compound datatype to describe a complex num­ber. This is a structure with two components, “real” and “imaginary”, and each component is a double. An equivalent C struct whose type is defined by the complex_t struct is shown.



Code Example 6-9. A compound datatype for complex numbers in C

	
typedef struct {

   double re;   /*real part*/

   double im;   /*imaginary part*/

} complex_t;

 

hid_t complex_id = H5Tcreate (H5T_COMPOUND, sizeof (complex_t));

H5Tinsert (complex_id, “real”, HOFFSET(complex_t,re),

H5T_NATIVE_DOUBLE);

H5Tinsert (complex_id, “imaginary”, HOFFSET(complex_t,im),

H5T_NATIVE_DOUBLE);








 

The example below shows a way of creating an HDF5 Fortran compound datatype to describe a complex number. This is a Fortran derived type with two components, “real” and “imaginary”, and each component is DOUBLE PRECISION. An equivalent Fortran TYPE whose type is defined by the TYPE complex_t is shown.



Code Example 6-10. A compound datatype for complex numbers in Fortran

	
TYPE complex_t

   DOUBLE PRECISION re   ! real part

   DOUBLE PRECISION im;  ! imaginary part

END TYPE complex_t

 

CALL h5tget_size_f(H5T_NATIVE_DOUBLE, re_size, error)

CALL h5tget_size_f(H5T_NATIVE_DOUBLE, im_size, error)

complex_t_size = re_size + im_size

CALL h5tcreate_f(H5T_COMPOUND_F, complex_t_size, type_id)

offset = 0

CALL h5tinsert_f(type_id, “real”, offset, H5T_NATIVE_DOUBLE,

error)

offset = offset + re_size

CALL h5tinsert_f(type_id, “imaginary”, offset, H5T_NATIVE_DOUBLE,

error)








 

Important Note: The compound datatype is created with a size sufficient to hold all its members. In the C example above, the size of the C struct and the HOFFSET macro are used as a convenient mechanism to determine the appropriate size and offset. Alternatively, the size and offset could be manually deter­mined: the size can be set to 16 with “real” at offset 0 and “imaginary” at offset 8. However, different plat­forms and compilers have different sizes for “double” and may have alignment restrictions which require additional padding within the structure. It is much more portable to use the HOFFSET macro which assures that the values will be correct for any platform.

The figure below shows how the compound datatype would be laid out assuming that NATIVE_DOUBLE are 64-bit numbers and that there are no alignment requirements. The total size of the compound data­type will be 16 bytes, the “real” component will start at byte 0, and “imaginary” will start at byte 8.



Figure 6-10. Layout of a compound datatype

	
[image: Dtypes_fig10.JPG]

 

 








 

The members of a compound datatype may be any HDF5 datatype including the compound, array, and variable-length (VL) types. The figure and example below show the memory layout and code which cre­ates a compound datatype composed of two complex values, and each complex value is also a compound datatype as in the figure above.



Figure 6-11. Layout of a compound datatype nested in a compound datatype

	
[image: Dtypes_fig11.JPG]

 

 










Code Example 6-11. Code for a compound datatype nested in a compound datatype

	
typedef struct {

   complex_t x;

   complex_t y;

} surf_t;

 

hid_t complex_id, surf_id; /*hdf5 datatypes*/





	
 

complex_id = H5Tcreate (H5T_COMPOUND, sizeof(complex_t));

H5Tinsert (complex_id, “re”, HOFFSET(complex_t,re),

H5T_NATIVE_DOUBLE);

H5Tinsert (complex_id, “im”, HOFFSET(complex_t,im),

H5T_NATIVE_DOUBLE);





	
 

surf_id = H5Tcreate (H5T_COMPOUND, sizeof(surf_t));

H5Tinsert (surf_id, “x”, HOFFSET(surf_t,x), complex_id);

H5Tinsert (surf_id, “y”, HOFFSET(surf_t,y), complex_id);








 

Note that a similar result could be accomplished by creating a compound datatype and inserting four fields. See the figure below. This results in the same layout as the figure above. The difference would be how the fields are addressed. In the first case, the real part of ‘y’ is called ‘y.re’; in the second case it is ‘y-re’.



Code Example 6-12. Another compound datatype nested in a compound datatype

	
typedef struct {

   complex_t x;

   complex_t y;

} surf_t;

 





	
hid_t surf_id = H5Tcreate (H5T_COMPOUND, sizeof(surf_t));

H5Tinsert (surf_id, “x-re”, HOFFSET(surf_t,x.re),

H5T_NATIVE_DOUBLE);

H5Tinsert (surf_id, “x-im”, HOFFSET(surf_t,x.im),

H5T_NATIVE_DOUBLE);

H5Tinsert (surf_id, “y-re”, HOFFSET(surf_t,y.re),

H5T_NATIVE_DOUBLE);

H5Tinsert (surf_id, “y-im”, HOFFSET(surf_t,y.im),

H5T_NATIVE_DOUBLE);








 

The members of a compound datatype do not always fill all the bytes. The HOFFSET macro assures that the members will be laid out according to the requirements of the platform and language. The example below shows an example of a C struct which requires extra bytes of padding on many platforms. The sec­ond element, ‘b’, is a 1-byte character followed by an 8 byte double, ‘c’. On many systems, the 8-byte value must be stored on a 4- or 8-byte boundary. This requires the struct to be larger than the sum of the size of its elements.

In the example below, sizeof and HOFFSET are used to assure that the members are inserted at the cor­rect offset to match the memory conventions of the platform. The figure below shows how this data ele­ment would be stored in memory, assuming the double must start on a 4-byte boundary. Notice the extra bytes between ‘b’ and ‘c’.



Code Example 6-13. A compound datatype that requires padding

	
typedef struct s1_t {                

   int    a;         

   char   b;                  

   double c;          

} s1_t;

 

s1_tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));

H5Tinsert(s1_tid, “a_name”, HOFFSET(s1_t, a), H5T_NATIVE_INT);

H5Tinsert(s1_tid, “b_name”, HOFFSET(s1_t, b), H5T_NATIVE_CHAR);

H5Tinsert(s1_tid, “c_name”, HOFFSET(s1_t, c), H5T_NATIVE_DOUBLE);










Figure 6-12. Memory layout of a compound datatype that requires padding

	
[image: Dtypes_fig23.JPG]

 

 








 

However, data stored on disk does not require alignment, so unaligned versions of compound data struc­tures can be created to improve space efficiency on disk. These unaligned compound datatypes can be created by computing offsets by hand to eliminate inter-member padding, or the members can be packed by calling H5Tpack (which modifies a datatype directly, so it is usually preceded by a call to H5Tcopy).

The example below shows how to create a disk version of the compound datatype from the figure above in order to store data on disk in as compact a form as possible. Packed compound datatypes should gener­ally not be used to describe memory as they may violate alignment constraints for the architecture being used. Note also that using a packed datatype for disk storage may involve a higher data conversion cost.



Code Example 6-14. Create a packed compound datatype in C

	
 hid_t s2_tid = H5Tcopy (s1_tid);

H5Tpack (s2_tid);








 

The example below shows the sequence of Fortran calls to create a packed compound datatype. An HDF5 Fortran compound datatype never describes a compound datatype in memory and compound data is ALWAYS written by fields as described in the next section. Therefore packing is not needed unless the off­set of each consecutive member is not equal to the sum of the sizes of the previous members.



Code Example 6-15. Create a packed compound datatype in Fortran

	
CALL h5tcopy_f(s1_id, s2_id, error)

CALL h5tpack_f(s2_id, error)








 

Creating and Writing Datasets with Compound Datatypes

Creating datasets with compound datatypes is similar to creating datasets with any other HDF5 datatypes. But writing and reading may be different since datasets that have compound datatypes can be written or read by a field (member) or subsets of fields (members). The compound datatype is the only composite datatype that supports “sub-setting” by the elements the datatype is built from.

The example below shows a C example of creating and writing a dataset with a compound datatype.



Code Example 6-16. Create and write a dataset with a compound datatype in C

	
typedef struct s1_t {

   int a;

   float b;

   double c;

} s1_t;

 





	
 

s1_t data[LENGTH];

 

/* Initialize data */

for (i = 0; i < LENGTH; i++) {

   data[i].a = i;

   data[i].b = i*i;

   data[i].c = 1./(i+1);

...





	
s1_tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));

H5Tinsert(s1_tid, “a_name”, HOFFSET(s1_t, a),

H5T_NATIVE_INT);

H5Tinsert(s1_tid, “b_name”, HOFFSET(s1_t, b),

H5T_NATIVE_FLOAT);

H5Tinsert(s1_tid, “c_name”, HOFFSET(s1_t, c),

H5T_NATIVE_DOUBLE);

...





	
dataset_id = H5Dcreate(file_id, “SDScompound.h5”, s1_t,

space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

H5Dwrite (dataset_id, s1_tid, H5S_ALL, H5S_ALL,

H5P_DEFAULT, data);








 

The example below shows the content of the file written on a little-endian machine.



Code Example 6-17. Create and write a little-endian dataset with a compound datatype in C

	
HDF5 “SDScompound.h5” {

GROUP “/” {

   DATASET “ArrayOfStructures” {

      DATATYPE  H5T_COMPOUND {

         H5T_STD_I32LE “a_name”;

         H5T_IEEE_F32LE “b_name”;

         H5T_IEEE_F64LE “c_name”;





	
      }

      DATASPACE  SIMPLE { ( 3 ) / ( 3 ) }

      DATA {

      (0): {

               0,

               0,

               1

         },





	
      (1): {

               1,

               1,

               0.5

         },





	
      (2): {

               2,

               4,

               0.333333

         }

      }

   }

}

}








 

It is not necessary to write the whole data at once. Datasets with compound datatypes can be written by field or by subsets of fields. In order to do this one has to remember to set the transfer property of the dataset using the H5Pset_preserve call and to define the memory datatype that corresponds to a field. The example below shows how float and double fields are  written to the dataset.



Code Example 6-18. Writing floats and doubles to a dataset

	
typedef struct sb_t {

   float b;

   double c;

} sb_t;

 





	
typedef struct sc_t {

   float b;

   double c;

} sc_t;

sb_t data1[LENGTH];

sc_t data2[LENGTH];

 





	
/* Initialize data */

for (i = 0; i < LENGTH; i++) {

      data1.b = i*i;

      data2.c = 1./(i+1);

}

...

/* Create dataset as in example 15 */

...





	
/* Create memory datatypes corresponding to float */

/* and double datatype fields */

 

sb_tid = H5Tcreate (H5T_COMPOUND, sizeof(sb_t));

H5Tinsert(sb_tid, “b_name”, HOFFSET(sb_t, b),

H5T_NATIVE_FLOAT);

sc_tid = H5Tcreate (H5T_COMPOUND, sizeof(sc_t));

H5Tinsert(sc_tid, “c_name”, HOFFSET(sc_t, c),

H5T_NATIVE_DOUBLE);

...





	
/* Set transfer property */

xfer_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_preserve(xfer_id, 1);

H5Dwrite (dataset_id, sb_tid, H5S_ALL, H5S_ALL,

xfer_id, data1);

H5Dwrite (dataset_id, sc_tid, H5S_ALL, H5S_ALL,

xfer_id, data2);








 

The figure below shows the content of the file written on a little-endian machine. Only float and double fields are written. The default fill value is used to initialize the unwritten integer field.



Code Example 6-19. Writing floats and doubles to a dataset on a little-endian system

	
HDF5 “SDScompound.h5” {

GROUP “/” {

   DATASET “ArrayOfStructures” {

      DATATYPE  H5T_COMPOUND {

         H5T_STD_I32LE “a_name”;

         H5T_IEEE_F32LE “b_name”;

         H5T_IEEE_F64LE “c_name”;

      }





	
      DATASPACE  SIMPLE { ( 3 ) / ( 3 ) }

      DATA {

      (0): {

               0,

               0,

               1

            },





	
      (1): {

               0,

               1,

               0.5

            },





	
      (2): {

               0,

               4,

               0.333333





	
            }

         }

      }

}

}








 

The example below contains a Fortran example that creates and writes a dataset with a compound data­type. As this example illustrates, writing and reading compound datatypes in Fortran is always done by fields. The content of the written file is the same as shown in the example above.



Code Example 6-20. Create and write a dataset with a compound datatype in Fortran

	
! One cannot write an array of a derived datatype in

! Fortran.

TYPE s1_t

   INTEGER a

   REAL b

   DOUBLE PRECISION c

END TYPE s1_t





	
TYPE(s1_t) d(LENGTH)

! Therefore, the following code initializes an array

! corresponding to each field in the derived datatype

! and writes those arrays to the dataset

 

INTEGER, DIMENSION(LENGTH) :: a

REAL, DIMENSION(LENGTH) :: b

DOUBLE PRECISION, DIMENSION(LENGTH) :: c

 





	
! Initialize data

   do i = 1, LENGTH

      a(i) = i-1

      b(i) = (i-1) * (i-1)

      c(i) = 1./i

   enddo

 

...

 





	
! Set dataset transfer property to preserve partially

! initialized fields during write/read to/from dataset

! with compound datatype.

!

CALL h5pcreate_f(H5P_DATASET_XFER_F, plist_id, error)

CALL h5pset_preserve_f(plist_id, .TRUE., error)

...

!





	
! Create compound datatype.

!

! First calculate total size by calculating sizes of

! each member

!

CALL h5tget_size_f(H5T_NATIVE_INTEGER, type_sizei, error)

CALL h5tget_size_f(H5T_NATIVE_REAL, type_sizer, error)

CALL h5tget_size_f(H5T_NATIVE_DOUBLE, type_sized, error)

type_size = type_sizei + type_sizer + type_sized

CALL h5tcreate_f(H5T_COMPOUND_F, type_size, dtype_id, error)





	
!

! Insert members

!

!





	
! INTEGER member

!

offset = 0

CALL h5tinsert_f(dtype_id, “a_name”, offset,

H5T_NATIVE_INTEGER, error)

!

! REAL member

!

offset = offset + type_sizei

CALL h5tinsert_f(dtype_id, “b_name”, offset, H5T_NATIVE_REAL,

error)

!





	
! DOUBLE PRECISION member

!

offset = offset + type_sizer

CALL h5tinsert_f(dtype_id, “c_name”, offset,

H5T_NATIVE_DOUBLE, error)

 

!

! Create the dataset with compound datatype.

!





	
CALL h5dcreate_f(file_id, dsetname, dtype_id, dspace_id, &

dset_id, error, H5P_DEFAULT_F, H5P_DEFAULT_F,

H5P_DEFAULT_F)

!

...

! Create memory types. We have to create a compound

! datatype for each member we want to write.

!





	
CALL h5tcreate_f(H5T_COMPOUND_F, type_sizei, dt1_id, error)

offset = 0

CALL h5tinsert_f(dt1_id, “a_name”, offset,

H5T_NATIVE_INTEGER, error)

!

CALL h5tcreate_f(H5T_COMPOUND_F, type_sizer, dt2_id, error)

offset = 0





	
CALL h5tinsert_f(dt2_id, “b_name”, offset, H5T_NATIVE_REAL,

error)

!

CALL h5tcreate_f(H5T_COMPOUND_F, type_sized, dt3_id, error)

offset = 0

CALL h5tinsert_f(dt3_id, “c_name”, offset, H5T_NATIVE_DOUBLE,

error)





	
!

! Write data by fields in the datatype. Fields order

! is not important.

!

CALL h5dwrite_f(dset_id, dt3_id, c, data_dims, error,

xfer_prp = plist_id)

CALL h5dwrite_f(dset_id, dt2_id, b, data_dims, error,

xfer_prp = plist_id)

CALL h5dwrite_f(dset_id, dt1_id, a, data_dims, error,

xfer_prp = plist_id)








 

Reading Datasets with Compound Datatypes

Reading datasets with compound datatypes may be a challenge. For general applications there is no way to know a priori the corresponding C structure. Also, C structures cannot be allocated on the fly during dis­covery of the dataset’s datatype. For general C, C++, Fortran and Java application the following steps will be required to read and to interpret data from the dataset with compound datatype:

1.      Get the identifier of the compound datatype in the file with the H5Dget_type call

2.      Find the number of the compound datatype members with the H5Tget_nmembers call

3.      Iterate through compound datatype members

•        Get member class with the H5Tget_member_class call

•        Get member name with the H5Tget_member_name call

•        Check class type against predefined classes

•        H5T_INTEGER

•        H5T_FLOAT

•        H5T_STRING

•        H5T_BITFIELD

•        H5T_OPAQUE

•        H5T_COMPOUND

•        H5T_REFERENCE

•        H5T_ENUM

•        H5T_VLEN

•        H5T_ARRAY

•        If class is H5T_COMPOUND, then go to step 2 and repeat all steps under step 3. If class is not H5T_COMPOUND, then a member is of an atomic class and can be read to a corresponding buf­fer after discovering all necessary information specific to each atomic type (for example, size of the integer or floats, super class for enumerated and array datatype, and its sizes)

The examples below show how to read a dataset with a known compound datatype.

The first example below shows the steps needed to read data of a known structure. First, build a memory datatype the same way it was built when the dataset was created, and then second use the datatype in a H5Dread call.



Code Example 6-21. Read a dataset using a memory datatype

	
typedef struct s1_t {

   int a;

   float b;

   double c;

} s1_t;

 





	
s1_t *data;

 

...

s1_tid = H5Tcreate(H5T_COMPOUND, sizeof(s1_t));

H5Tinsert(s1_tid, “a_name”, HOFFSET(s1_t, a),

H5T_NATIVE_INT);

H5Tinsert(s1_tid, “b_name”, HOFFSET(s1_t, b),

H5T_NATIVE_FLOAT);

H5Tinsert(s1_tid, “c_name”, HOFFSET(s1_t, c),

H5T_NATIVE_DOUBLE);

...





	
dataset_id = H5Dopen(file_id, “SDScompound.h5”,

H5P_DEFAULT);

...

data = (s1_t *) malloc (sizeof(s1_t)*LENGTH);

H5Dread(dataset_id, s1_tid, H5S_ALL, H5S_ALL,

H5P_DEFAULT, data);








 

Instead of building a memory datatype, the application could use the H5Tget_native_type function. See the example below.



Code Example 6-22. Read a dataset using H5Tget_native_type

	
typedef struct s1_t {

   int a;

   float b;

   double c;

} s1_t;

 





	
s1_t *data;

hid_t file_s1_t, mem_s1_t;

...

dataset_id = H5Dopen(file_id, “SDScompound.h5”,

H5P_DEFAULT);

/* Discover datatype in the file */

file_s1_t  = H5Dget_type(dataset_id);





	
/* Find corresponding memory datatype */

mem_s1_t   = H5Tget_native_type(file_s1_t,

H5T_DIR_DEFAULT);

...

data = (s1_t *) malloc (sizeof(s1_t)*LENGTH);

H5Dread (dataset_id, mem_s1_tid, H5S_ALL, H5S_ALL,

H5P_DEFAULT, data);








 

The example below shows how to read just one float member of a compound datatype.



Code Example 6-23. Read one floating point member of a compound datatype

	
typedef struct s1_t {

   float b;

} sf_t;

 

sf_t *data;

 

...

sf_tid = H5Tcreate(H5T_COMPOUND, sizeof(sf_t));

H5Tinsert(s1_tid, “b_name”, HOFFSET(sf_t, b),

H5T_NATIVE_FLOAT);

...

dataset_id = H5Dopen(file_id, “SDScompound.h5”,

H5P_DEFAULT);

...

data = (sf_t *) malloc (sizeof(sf_t)*LENGTH);

H5Dread(dataset_id, sf_tid, H5S_ALL, H5S_ALL,

H5P_DEFAULT, data);








 

The example below shows how to read float and double members of a compound datatype into a struc­ture that has those fields in a different order. Please notice that H5Tinsert calls can be used in an order different from the order of the structure’s members.



Code Example 6-24. Read float and double members of a compound datatype

	
typedef struct s1_t {

   double c;

   float b;

} sdf_t;

 

sdf_t *data;

 

...

sdf_tid = H5Tcreate(H5T_COMPOUND, sizeof(sdf_t));

H5Tinsert(sdf_tid, “b_name”, HOFFSET(sdf_t, b),

H5T_NATIVE_FLOAT);

H5Tinsert(sdf_tid, “c_name”, HOFFSET(sdf_t, c),

H5T_NATIVE_DOUBLE);

...

dataset_id = H5Dopen(file_id, “SDScompound.h5”,

H5P_DEFAULT);

...

data = (sdf_t *) malloc (sizeof(sdf_t)*LENGTH);

H5Dread(dataset_id, sdf_tid, H5S_ALL, H5S_ALL,

H5P_DEFAULT, data);








 

6.5.2.2.2. Array

Many scientific datasets have multiple measurements for each point in a space. There are several natural ways to represent this data, depending on the variables and how they are used in computation. See the table and the figure below.



Table 6-20. Representing data with multiple measurements

 	
Storage Strategy


 	
Stored as


 	
Remarks





	
Multiple planes


	
Several datasets with identical dataspaces


	
This is optimal when variables are accessed individually, or when often uses only selected variables.





	
Additional dimen­sion


	
One dataset, the last “dimension” is a vec­tor of variables


	
This can give good performance, although selecting only a few variables may be slow. This may not reflect the science.





	
Record with multi­ple values


	
One dataset with compound datatype


	
This enables the variables to be read all together or selected. Also handles “vectors” of heterogeneous data.





	
Vector or Tensor value


	
One dataset, each data element is a small array of values.


	
This uses the same amount of space as the previous two, and may represent the science model better.










Figure 6-13. Representing data with multiple measurements

	
[image: Dtypes_fig26_pic1of4.JPG]

 


	
[image: Dtypes_fig26_pic2of4.JPG]

 





	
[image: Dtypes_fig26_pic3of4.JPG]

 

 


	
[image: Dtypes_fig26_pic4of4.JPG]

 

 








 

The HDF5 H5T_ARRAY datatype defines the data element to be a homogeneous, multi-dimensional array. See Figure 13d above. The elements of the array can be any HDF5 datatype (including compound and array), and the size of the datatype is the total size of the array. A dataset of array datatype cannot be sub­divided for I/O within the data element: the entire array of the data element must be transferred. If the data elements need to be accessed separately, for example, by plane, then the array datatype should not be used. The table below shows advantages and disadvantages of various storage methods.



Table 6-21. Storage method advantages and disadvantages

 	
Method


 	
Advantages


 	
Disadvantages





	
a) Multiple Datasets


	
Easy to access each plane, can select any plane(s)


	
Less efficient to access a ‘col­umn’ through the planes





	
b) N+1 Dimension


	
All access patterns supported


	
Must be homogeneous data­type

 

The added dimension may not make sense in the scientific model





	
c) Compound Datatype


	
Can be heterogeneous datatype


	
Planes must be named, selec­tion is by plane

 

Not a natural representation for a matrix





	
d) Array


	
A natural representation for vector or tensor data


	
Cannot access elements sepa­rately (no access by plane)








 

An array datatype may be multi-dimensional with 1 to H5S_MAX_RANK (the maximum rank of a dataset is currently 32) dimensions. The dimensions can be any size greater than 0, but unlimited dimensions are not supported (although the datatype can be a variable-length datatype).

An array datatype is created with the H5Tarray_create call, which specifies the number of dimensions, the size of each dimension, and the base type of the array. The array datatype can then be used in any way that any datatype object is used. The example below shows the creation of a datatype that is a two-dimensional array of native integers, and this is then used to create a dataset. Note that the dataset can be a dataspace that is any number and size of dimensions. The figure below shows the layout in memory assuming that the native integers are 4 bytes. Each data element has 6 elements, for a total of 24 bytes.



Code Example 6-25. Create a two-dimensional array datatype

	
hid_t file, dataset;

hid_t datatype, dataspace;

hsize_t adims[] = {3, 2};

 

datatype = H5Tarray_create(H5T_NATIVE_INT, 2, adims,

NULL);

 

dataset = H5Dcreate(file, datasetname, datatype,

dataspace, H5P_DEFAULT, H5P_DEFAULT,

H5P_DEFAULT);










Figure 6-14. Memory layout of a two-dimensional array datatype

	
[image: Dtypes_fig28.JPG]

 

 








 

6.5.2.2.3. Variable-length Datatypes

A variable-length (VL) datatype is a one-dimensional sequence of a datatype which are not fixed in length from one dataset location to another. In other words, each data element may have a different number of members. Variable-length datatypes cannot be divided, the entire data element must be transferred.

VL datatypes are useful to the scientific community in many different ways, possibly including:

•        Ragged arrays: Multi-dimensional ragged arrays can be implemented with the last (fastest chang­ing) dimension being ragged by using a VL datatype as the type of the element stored.

•        Fractal arrays: A nested VL datatype can be used to implement ragged arrays of ragged arrays, to whatever nesting depth is required for the user.

•        Polygon lists: A common storage requirement is to efficiently store arrays of polygons with differ­ent numbers of vertices. A VL datatype can be used to efficiently and succinctly describe an array of polygons with different numbers of vertices.

•        Character strings: Perhaps the most common use of VL datatypes will be to store C-like VL charac­ter strings in dataset elements or as attributes of objects.

•        Indices (for example, of objects within a file): An array of VL object references could be used as an index to all the objects in a file which contain a particular sequence of dataset values.

•        Object Tracking: An array of VL dataset region references can be used as a method of tracking objects or features appearing in a sequence of datasets.

A VL datatype is created by calling H5Tvlen_create which specifies the base datatype. The first example below shows an example of code that creates a VL datatype of unsigned integers. Each data element is a one-dimensional array of zero or more members and is stored in the hvl_t structure. See the second example below.



Code Example 6-26. Create a variable-length datatype of unsigned integers

	
tid1 = H5Tvlen_create (H5T_NATIVE_UINT);

 

dataset=H5Dcreate(fid1, “Dataset1”, tid1, sid1,

H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);










Code Example 6-27. Data element storage for members of the VL datatype

	
typedef struct  {

   size_t len; /* Length of VL data */

                     /*(in base type units) */

   void *p; /* Pointer to VL data */

} hvl_t;








 

The first example below shows how the VL data is written. For each of the 10 data elements, a length and data buffer must be allocated. Below the two examples is a figure that shows how the data is laid out in memory.

An analogous procedure must be used to read the data. See the second example below. An appropriate array of vl_t must be allocated, and the data read. It is then traversed one data element at a time. The H5Dvlen_reclaim call frees the data buffer for the buffer. With each element possibly being of different sequence lengths for a dataset with a VL datatype, the memory for the VL datatype must be dynamically allocated. Currently there are two methods of managing the memory for VL datatypes: the standard C malloc/free memory allocation routines or a method of calling user-defined memory management rou­tines to allocate or free memory (set with H5Pset_vlen_mem_manager). Since the memory allocated when reading (or writing) may be complicated to release, the H5Dvlen_reclaim function is provided to traverse a memory buffer and free the VL datatype information without leaking memory.



Code Example 6-28. Write VL data

	
hvl_t wdata[10];           /* Information to write */

 

/* Allocate and initialize VL data to write */

for(i=0; i < 10; i++) {

   wdata[i].p = malloc((i+1)*sizeof(unsigned int));

   wdata[i].len = i+1;

   for(j=0; j<(i+1); j++)

      ((unsigned int *)wdata[i].p)[j]=i*10+j;

}

 

ret=H5Dwrite(dataset, tid1, H5S_ALL, H5S_ALL, H5P_DEFAULT,

wdata);










Code Example 6-29. Read VL data

	
hvl_t rdata[SPACE1_DIM1];      

ret=H5Dread(dataset, tid1, H5S_ALL, H5S_ALL, xfer_pid, rdata);

 

for(i=0; i<SPACE1_DIM1; i++) {

   printf(“%d: len %d ”,rdata[i].len);

   for(j=0; j<rdata[i].len; j++) {

      printf(“ value: %u\n”,((unsigned int *)rdata[i].p)[j]);

   }

}

ret=H5Dvlen_reclaim(tid1, sid1, xfer_pid, rdata);








 



Figure 6-15. Memory layout of a VL datatype

	
[image: Dtypes_fig33.JPG]

 

 








 

The user program must carefully manage these relatively complex data structures. The H5Dvlen_re­claim function performs a standard traversal, freeing all the data. This function analyzes the datatype and dataspace objects, and visits each VL data element, recursing through nested types. By default, the system free is called for the pointer in each vl_t. Obviously, this call assumes that all of this memory was allocated with the system malloc.

The user program may specify custom memory manager routines, one for allocating and one for freeing. These may be set with the H5Pvlen_mem_manager, and must have the following prototypes:

•        typedef void *(*H5MM_allocate_t)(size_t size, void *info);

•        typedef void (*H5MM_free_t)(void *mem, void *free_info);

The utility function H5Dget_vlen_buf_size checks the number of bytes required to store the VL data from the dataset. This function analyzes the datatype and dataspace object to visit all the VL data ele­ments, to determine the number of bytes required to store the data for the in the destination storage (memory). The size value is adjusted for data conversion and alignment in the destination.

6.6. Other Non-numeric Datatypes

Several datatype classes define special types of objects.

6.6.1. Strings

Text data is represented by arrays of characters, called strings. Many programming languages support dif­ferent conventions for storing strings, which may be fixed or variable-length, and may have different rules for padding unused storage. HDF5 can represent strings in several ways. See the figure below.



Figure 6-16. A string stored as one-character elements in a one-dimensional array

	
The strings to store are “Four score” and “lazy programmers.”





	
a) H5T_NATIVE_CHAR: The dataset is a one-dimensional array with 29 elements, and each element is a single character.





	
[image: Dtypes_fig16a.JPG]

 

 





	
b) Fixed-length string: The dataset is a one-dimensional array with two elements, and each element is 20 characters.





	
[image: Dtypes_fig16b.JPG]

 

 





	
c) Variable-length string: The dataset is a one-dimensional array with two elements, and each ele­ment is a variable-length string. This is the same result when stored as a fixed-length string except that the first element of the array will need only 11 bytes for storage instead of 20.





	
[image: Dtypes_fig16c.JPG]

 





	
[image: Dtypes_fig16d.JPG]

 

 








First, a dataset may have a dataset with datatype H5T_NATIVE_CHAR with each character of the string as an element of the dataset. This will store an unstructured block of text data, but gives little indication of any structure in the text. See item a in the figure above.

A second alternative is to store the data using the datatype class H5T_STRING with each element a fixed length. See item b in the figure above. In this approach, each element might be a word or a sentence, addressed by the dataspace. The dataset reserves space for the specified number of characters, although some strings may be shorter. This approach is simple and usually is fast to access, but can waste storage space if the length of the Strings varies.

A third alternative is to use a variable-length datatype. See item c in the figure above. This can be done using the standard mechanisms described above. The program would use vl_t structures to write and read the data.

A fourth alternative is to use a special feature of the string datatype class to set the size of the datatype to H5T_VARIABLE. See item c in the figure above. The example below shows a declaration of a datatype of type H5T_C_S1 which is set to H5T_VARIABLE. The HDF5 Library automatically translates between this and the vl_t structure. Note: the H5T_VARIABLE size can only be used with string datatypes.



Code Example 6-30. Set the string datatype size to H5T_VARIABLE

	
tid1 = H5Tcopy (H5T_C_S1);

 

ret = H5Tset_size (tid1, H5T_VARIABLE);








 

Variable-length strings can be read into C strings (in other words, pointers to zero terminated arrays of char). See the example below.



Code Example 6-31. Read variable-length strings into C strings

	
char *rdata[SPACE1_DIM1];  

 

ret=H5Dread(dataset, tid1, H5S_ALL, H5S_ALL, xfer_pid, rdata);

 

for(i=0; i<SPACE1_DIM1; i++) {   

printf(“%d: len: %d, str is: %s\n”, i, strlen(rdata[i]),

rdata[i]);

}

 

ret=H5Dvlen_reclaim(tid1, sid1, xfer_pid, rdata);








 

6.6.2. Reference

In HDF5, objects (groups, datasets, and committed datatypes) are usually accessed by name. There is another way to access stored objects - by reference. There are two reference datatypes: object reference and region reference. Object reference objects are created with H5Rcreate and other calls (cross refer­ence). These objects can be stored and retrieved in a dataset as elements with reference datatype. The first example below shows an example of code that creates references to four objects, and then writes the array of object references to a dataset. The second example below shows a dataset of datatype reference being read and one of the reference objects being dereferenced to obtain an object pointer.

In order to store references to regions of a dataset, the datatype should be H5T_REGION_OBJ. Note that a data element must be either an object reference or a region reference: these are different types and cannot be mixed within a single array.

A reference datatype cannot be divided for I/O: an element is read or written completely.



Code Example 6-32. Create object references and write to a dataset

	
dataset=H5Dcreate(fid1, “Dataset3”, H5T_STD_REF_OBJ, sid1,

H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

 

   /* Create reference to dataset */

   ret = H5Rcreate(&wbuf[0], fid1,“/Group1/Dataset1”, H5R_OBJECT,

-1);

 





	
   /* Create reference to dataset */

   ret = H5Rcreate(&wbuf[1], fid1, “/Group1/Dataset2”, H5R_OBJECT,

-1);

 

   /* Create reference to group */

   ret = H5Rcreate(&wbuf[2], fid1, “/Group1”, H5R_OBJECT, -1);

 





	
   /* Create reference to committed datatype */

   ret = H5Rcreate(&wbuf[3], fid1, “/Group1/Datatype1”,

         H5R_OBJECT, -1);

 

   /* Write selection to disk */

 

ret=H5Dwrite(dataset, H5T_STD_REF_OBJ, H5S_ALL, H5S_ALL,

H5P_DEFAULT, wbuf);










Code Example 6-33. Read a dataset with a reference datatype

	
rbuf = malloc(sizeof(hobj_ref_t)*SPACE1_DIM1);

 

/* Read selection from disk */

ret=H5Dread(dataset, H5T_STD_REF_OBJ, H5S_ALL, H5S_ALL,

H5P_DEFAULT, rbuf);

 

/* Open dataset object */

dset2 = H5Rdereference(dataset, H5R_OBJECT, &rbuf[0]);








 

6.6.3. ENUM

The enum datatype implements a set of (name, value) pairs, similar to C/C++ enum. The values are cur­rently limited to native integer datatypes. Each name can be the name of only one value, and each value can have only one name.

The data elements of the ENUMERATION are stored according to the datatype. An example would be as an array of integers. The example below shows an example of how to create an enumeration with five ele­ments. The elements map symbolic names to 2-byte integers. See the table below.



Code Example 6-34. Create an enumeration with five elements

	
hid_t hdf_en_colors = H5Tcreate(H5T_ENUM, sizeof(short));

short val;

   H5Tenum_insert(hdf_en_colors, “RED”, (val=0,&val));

   H5Tenum_insert(hdf_en_colors, “GREEN”, (val=1,&val));

   H5Tenum_insert(hdf_en_colors, “BLUE”, (val=2,&val));

   H5Tenum_insert(hdf_en_colors, “WHITE”, (val=3,&val));

   H5Tenum_insert(hdf_en_colors, “BLACK”, (val=4,&val));

 

   H5Dcreate(fileid, datasetname, hdf_en_colors, spaceid,

         H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);










Table 6-22. An enumeration with five elements

 	
Name


 	
Value





	
RED


	
0





	
GREEN


	
1





	
BLUE


	
2





	
WHITE


	
3





	
BLACK


	
4








 

The figure below shows how an array of eight values might be stored. Conceptually, the array is an array of symbolic names [BLACK, RED, WHITE, BLUE, ...]. See item a in the figure below. These are stored as the val­ues and are short integers. So, the first 2 bytes are the value associated with “BLACK”, which is the number 4, and so on. See item b in the figure below.



Figure 6-17. Storing an enum array

	
a) Logical data to be written - eight elements





	
[image: Dtypes_fig17a.JPG]

 





	
[image: Dtypes_fig40.JPG]

 

 





	
b) The storage layout. Total size of the array is 16 bytes, 2 bytes per element.








 

The order that members are inserted into an enumeration type is unimportant; the important part is the associations between the symbol names and the values. Thus, two enumeration datatypes will be consid­ered equal if and only if both types have the same symbol/value associations and both have equal under­lying integer datatypes. Type equality is tested with the H5Tequal function.

If a particular architecture type is required, a little-endian or big-endian datatype for example, use a native integer datatype as the ENUM base datatype and use H5Tconvert on values as they are read from or written to a dataset.

6.6.4. Opaque

In some cases, a user may have data objects that should be stored and retrieved as blobs with no attempt to interpret them. For example, an application might wish to store an array of encrypted certificates which are 100 bytes long.

While an arbitrary block of data may always be stored as bytes, characters, integers, or whatever, this might mislead programs about the meaning of the data. The opaque datatype defines data elements which are uninterpreted by HDF5. The opaque data may be labeled with H5Tset_tag with a string that might be used by an application. For example, the encrypted certificates might have a tag to indicate the encryption and the certificate standard.

6.6.5. Bitfield

Some data is represented as bits, where the number of bits is not an integral byte and the bits are not nec­essarily interpreted as a standard type. Some examples might include readings from machine registers (for example, switch positions), a cloud mask, or data structures with several small integers that should be store in a single byte.

This data could be stored as integers, strings, or enumerations. However, these storage methods would likely result in considerable wasted space. For example, storing a cloud mask with one byte per value would use up to eight times the space of a packed array of bits.

The HDF5 bitfield datatype class defines a data element that is a contiguous sequence of bits, which are stored on disk in a packed array. The programming model is the same as for unsigned integers: the data­type object is created by copying a predefined datatype, and then the precision, offset, and padding are set.

While the use of the bitfield datatype will reduce storage space substantially, there will still be wasted space if the bitfield as a whole does not match the 1-, 2-, 4-, or 8-byte unit in which it is written. The remaining unused space can be removed by applying the N-bit filter to the dataset containing the bitfield data. For more information, see "Using the N-bit Filter."

6.7. Fill Values

The “fill value” for a dataset is the specification of the default value assigned to data elements that have not yet been written. In the case of a dataset with an atomic datatype, the fill value is a single value of the appropriate datatype, such as ‘0’ or ‘-1.0’. In the case of a dataset with a composite datatype, the fill value is a single data element of the appropriate type. For example, for an array or compound datatype, the fill value is a single data element with values for all the component elements of the array or compound data­type.

The fill value is set (permanently) when the dataset is created. The fill value is set in the dataset creation properties in the H5Dcreate call. Note that the H5Dcreate call must also include the datatype of the dataset, and the value provided for the fill value will be interpreted as a single element of this datatype. The example below shows code which creates a dataset of integers with fill value -1. Any unwritten data elements will be set to -1.



Code Example 6-35. Create a dataset with a fill value of -1

	
hid_t       plist_id;  

int filler;

 

filler = -1;

plist_id = H5Pcreate(H5P_DATASET_CREATE);

H5Pset_fill_value(plist_id, H5T_NATIVE_INT, &filler);

 

/* Create the dataset with fill value ‘-1’. */

dataset_id = H5Dcreate(file_id, “/dset”, H5T_STD_I32BE,

dataspace_id, H5P_DEFAULT, plist_id, H5P_DEFAULT);










Code Example 6-36. Create a fill value for a compound datatype

	
typedef struct s1_t {

   int a;

   char b;

   double c;

} s1_t;

s1_t filler;

 





	
s1_tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));

H5Tinsert(s1_tid, “a_name”, HOFFSET(s1_t, a),

H5T_NATIVE_INT);

H5Tinsert(s1_tid, “b_name”, HOFFSET(s1_t, b),

H5T_NATIVE_CHAR);

H5Tinsert(s1_tid, “c_name”, HOFFSET(s1_t, c),

H5T_NATIVE_DOUBLE);

 

filler.a = -1;

filler.b = ‘*’;

filler.c = -2.0;

 





	
plist_id = H5Pcreate(H5P_DATASET_CREATE);

H5Pset_fill_value(plist_id, s1_tid, &filler);

 

/* Create the dataset with fill value */

/* (-1, ‘*’, -2.0). */

dataset = H5Dcreate(file, datasetname, s1_tid, space,

H5P_DEFAULT, plist_id, H5P_DEFAULT);








 

The figure above shows how to create a fill value for a compound datatype. The procedure is the same as the previous example except the filler must be a structure with the correct fields. Each field is initialized to the desired fill value.

The fill value for a dataset can be retrieved by reading the dataset creation properties of the dataset and then by reading the fill value with H5Pget_fill_value. The data will be read into memory using the storage layout specified by the datatype. This transfer will convert data in the same way as H5Dread. The example below shows how to get the fill value from the dataset created in the example "Create a dataset with a fill value of -1".



Code Example 6-37. Retrieve a fill value

	
hid_t plist2;

int filler;

 

dataset_id = H5Dopen(file_id, “/dset”, H5P_DEFAULT);

plist2 = H5Dget_create_plist(dataset_id);

 

H5Pget_fill_value(plist2, H5T_NATIVE_INT, &filler);

 

/* filler has the fill value, ‘-1’ */








 

A similar procedure is followed for any datatype. The example below shows how to read the fill value for the compound datatype created in an example above. Note that the program must pass an element large enough to hold a fill value of the datatype indicated by the argument to H5Pget_fill_value. Also, the program must understand the datatype in order to interpret its components. This may be difficult to determine without knowledge of the application that created the dataset.



Code Example 6-38. Read the fill value for a compound datatype

	
char *       fillbuf;

int sz;

dataset = H5Dopen( file, DATASETNAME, H5P_DEFAULT);

 

s1_tid = H5Dget_type(dataset);





	
 

sz = H5Tget_size(s1_tid);

 

fillbuf = (char *)malloc(sz);

 

plist_id = H5Dget_create_plist(dataset);





	
 

H5Pget_fill_value(plist_id, s1_tid, fillbuf);

 

printf(“filler.a: %d\n”,((s1_t *) fillbuf)->a);

printf(“filler.b: %c\n”,((s1_t *) fillbuf)->b);

printf(“filler.c: %f\n”,((s1_t *) fillbuf)->c);








 

6.8. Complex Combinations of Datatypes

Several composite datatype classes define collections of other datatypes, including other composite data­types. In general, a datatype can be nested to any depth, with any combination of datatypes.

For example, a compound datatype can have members that are other compound datatypes, arrays, VL datatypes. An array can be an array of array, an array of compound, or an array of VL. And a VL datatype can be a variable-length array of compound, array, or VL datatypes.

These complicated combinations of datatypes form a logical tree, with a single root datatype, and leaves which must be atomic datatypes (predefined or user-defined). The figure below shows an example of a logical tree describing a compound datatype constructed from different datatypes.

Recall that the datatype is a description of the layout of storage. The complicated compound datatype is constructed from component datatypes, each of which describe the layout of part of the storage. Any datatype can be used as a component of a compound datatype, with the following restrictions:

1.      No byte can be part of more than one component datatype (in other words, the fields cannot overlap within the compound datatype)

2.      The total size of the components must be less than or equal to the total size of the compound datatype

These restrictions are essentially the rules for C structures and similar record types familiar from program­ming languages. Multiple typing, such as a C union, is not allowed in HDF5 datatypes.



Figure 6-18. A compound datatype built with different datatypes

	
[image: Dtypes_fig45.JPG]

 

 








 

6.8.1. Creating a Complicated Compound Datatype

To construct a complicated compound datatype, each component is constructed, and then added to the enclosing datatype description. The example below shows how to create a compound datatype with four members:

•        “T1”, a compound datatype with three members

•        “T2”, a compound datatype with two members

•        “T3”, a one-dimensional array of integers

•        “T4”, a string

Below the example code is a figure that shows this datatype as a logical tree. The output of the h5dump utility is shown in the example below the figure.

Each datatype is created as a separate datatype object. Figure 20 below shows the storage layout for the four individual datatypes. Then the datatypes are inserted into the outer datatype at an appropriate off­set. Figure 21 below shows the resulting storage layout. The combined record is 89 bytes long.

The Dataset is created using the combined compound datatype. The dataset is declared to be a 4 by 3 array of compound data. Each data element is an instance of the 89-byte compound datatype. Figure 22 below shows the layout of the dataset, and expands one of the elements to show the relative position of the component data elements.

Each data element is a compound datatype, which can be written or read as a record, or each field may be read or written individually. The first field (“T1”) is itself a compound datatype with three fields (“T1.a”, “T1.b”, and “T1.c”). “T1” can be read or written as a record, or individual fields can be accessed. Similarly, the second filed is a compound datatype with two fields (“T2.f1”, “T2.f2”).

The third field (“T3”) is an array datatype. Thus, “T3” should be accessed as an array of 40 integers. Array data can only be read or written as a single element, so all 40 integers must be read or written to the third field. The fourth field (“T4”) is a single string of length 25.



Code Example 6-39. Create a compound datatype with four members

	
typedef struct s1_t {

   int a;

   char b;

   double c;

} s1_t;

 





	
typedef struct s2_t {

   float f1;

   float f2;

} s2_t;

hid_t      s1_tid, s2_tid, s3_tid, s4_tid, s5_tid;

 





	
/* Create a datatype for s1 */

s1_tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));

H5Tinsert(s1_tid, “a_name”, HOFFSET(s1_t, a),

H5T_NATIVE_INT);

H5Tinsert(s1_tid, “b_name”, HOFFSET(s1_t, b),

H5T_NATIVE_CHAR);

H5Tinsert(s1_tid, “c_name”, HOFFSET(s1_t, c),

H5T_NATIVE_DOUBLE);

 





	
/* Create a datatype for s2. *.

s2_tid = H5Tcreate (H5T_COMPOUND, sizeof(s2_t));

H5Tinsert(s2_tid, “f1”, HOFFSET(s2_t, f1),

H5T_NATIVE_FLOAT);

H5Tinsert(s2_tid, “f2”, HOFFSET(s2_t, f2),

H5T_NATIVE_FLOAT);

 





	
/* Create a datatype for an Array of integers */

s3_tid = H5Tarray_create(H5T_NATIVE_INT, RANK, dim);

 

/* Create a datatype for a String of 25 characters */

s4_tid = H5Tcopy(H5T_C_S1);

H5Tset_size(s4_tid, 25);





	
/*

* Create a compound datatype composed of one of each of

* these types. The total size is the sum of the size of

* each.

*/

 

sz = H5Tget_size(s1_tid) + H5Tget_size(s2_tid) +

         H5Tget_size(s3_tid) + H5Tget_size(s4_tid);

 





	
s5_tid = H5Tcreate (H5T_COMPOUND, sz);

 

/* Insert the component types at the appropriate */

* offsets.

*/





	
H5Tinsert(s5_tid, “T1”, 0, s1_tid);

H5Tinsert(s5_tid, “T2”, sizeof(s1_t), s2_tid);

H5Tinsert(s5_tid, “T3”, sizeof(s1_t)+sizeof(s2_t), s3_tid);

H5Tinsert(s5_tid, “T4”, (sizeof(s1_t) +sizeof(s2_t)+

H5Tget_size(s3_tid)), s4_tid);

 





	
/*

* Create the dataset with this datatype.

*/

dataset = H5Dcreate(file, DATASETNAME, s5_tid, space,

H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);








 



Figure 6-19. Logical tree for the compound datatype with four members

	
[image: Dtypes_fig47.JPG]

 

 










Code Example 6-40. Output from h5dump for the compound datatype

	
DATATYPE  H5T_COMPOUND {

   H5T_COMPOUND {

      H5T_STD_I32LE “a_name”;

      H5T_STD_I8LE “b_name”;

      H5T_IEEE_F64LE “c_name”;

   } “T1”;

   H5T_COMPOUND {

      H5T_IEEE_F32LE “f1”;

      H5T_IEEE_F32LE “f2”;

   } “T2”;





	
   H5T_ARRAY { [10] H5T_STD_I32LE } “T3”;

   H5T_STRING {

      STRSIZE 25;

      STRPAD H5T_STR_NULLTERM;

      CSET H5T_CSET_ASCII;

      CTYPE H5T_C_S1;

   } “T4”;

}










Figure 6-20. The storage layout for the four member datatypes

	
a) Compound type ‘s1_t’, size 16 bytes.





	
[image: Dtypes_fig20a.JPG]

 

 





	
b) Compound type ‘s2_t’, size 8 bytes.





	
[image: Dtypes_fig20b.JPG]

 

 





	
c) Array type ‘s3_tid’, 40 integers, total size 40 bytes.





	
[image: Dtypes_fig20c.JPG]

 

 





	
d) String type ‘s4_tid’, size 25 bytes.





	
[image: Dtypes_fig20d.JPG]

 

 








 



Figure 6-21. The storage layout of the combined four members

	
[image: Dtypes_fig50.JPG]

 

 








 



Figure 6-22. The layout of the dataset

	
a) A 4 x 3 array of Compound Datatype





	
[image: dtypes_fig51new.JPG]

 

 





	
b) Element [1,1] expanded








 

6.8.2. Analyzing and Navigating a Compound Datatype

A complicated compound datatype can be analyzed piece by piece to discover the exact storage layout. In the example above, the outer datatype is analyzed to discover that it is a compound datatype with four members. Each member is analyzed in turn to construct a complete map of the storage layout.

The example below shows an example of code that partially analyzes a nested compound datatype. The name and overall offset and size of the component datatype is discovered, and then its type is analyzed depending on the datatype class. Through this method, the complete storage layout can be discovered.



Code Example 6-41. Analyzing a compound datatype and its members

	
s1_tid = H5Dget_type(dataset);

 





	
if (H5Tget_class(s1_tid) == H5T_COMPOUND) {

   printf(“COMPOUND DATATYPE {\n”);

   sz = H5Tget_size(s1_tid);

   nmemb = H5Tget_nmembers(s1_tid);

   printf(“ %d bytes\n”,sz);

   printf(“ %d members\n”,nmemb);





	
   for (i =0; i < nmemb; i++) {

      s2_tid = H5Tget_member_type(s1_tid, i);

      if (H5Tget_class(s2_tid) == H5T_COMPOUND) {

         /* recursively analyze the nested type. */

 





	
      } else if (H5Tget_class(s2_tid) == H5T_ARRAY) {

         sz2 = H5Tget_size(s2_tid);

         printf(“  %s: NESTED ARRAY DATATYPE offset %d size %d  

                  {\n”,

            H5Tget_member_name(s1_tid, i),

            H5Tget_member_offset(s1_tid, i),

                  sz2);

            H5Tget_array_dims(s2_tid, dim);

                  s3_tid = H5Tget_super(s2_tid);

                  /* Etc., analyze the base type of the array */





	
      } else {

         /* analyze a simple type */

         printf(“ %s: type code %d offset %d size %d\n”,

            H5Tget_member_name(s1_tid, i),

            H5Tget_class(s2_tid),

            H5Tget_member_offset(s1_tid, i),

            H5Tget_size(s2_tid));

      }

      /* and so on…. */








 

6.9. Life Cycle of the Datatype Object

Application programs access HDF5 datatypes through identifiers. Identifiers are obtained by creating a new datatype or by copying or opening an existing datatype. The identifier can be used until it is closed or until the library shuts down. See items a and b in the figure below. By default, a datatype is transient, and it disappears when it is closed.

When a dataset or attribute is created (H5Dcreate or H5Acreate), its datatype is stored in the HDF5 file as part of the dataset or attribute object. See item c in the figure below. Once an object created, its data­type cannot be changed or deleted. The datatype can be accessed by calling H5Dget_type, H5Aget_­type, H5Tget_super, or H5Tget_member_type. See item d in the figure below. These calls return an identifier to a transient copy of the datatype of the dataset or attribute unless the datatype is a committed datatype.

Note that when an object is created, the stored datatype is a copy of the transient datatype. If two objects are created with the same datatype, the information is stored in each object with the same effect as if two different datatypes were created and used.

A transient datatype can be stored using H5Tcommit in the HDF5 file as an independent, named object, called a committed datatype. Committed datatypes were formerly known as named datatypes. See item e in the figure below. Subsequently, when a committed datatype is opened with H5Topen (item f), or is obtained with H5Tget_type or similar call (item k), the return is an identifier to a transient copy of the stored datatype. The identifier can be used in the same way as other datatype identifiers except that the committed datatype cannot be modified. When a committed datatype is copied with H5Tcopy, the return is a new, modifiable, transient datatype object (item f).

When an object is created using a committed datatype (H5Dcreate, H5Acreate), the stored datatype is used without copying it to the object. See item j in the figure below. In this case, if multiple objects are cre­ated using the same committed datatype, they all share the exact same datatype object. This saves space and makes clear that the datatype is shared. Note that a committed datatype can be shared by objects within the same HDF5 file, but not by objects in other files. For more information on copying committed datatypes to other HDF5 files, see the “Copying Committed Datatypes with H5Ocopy” topic in the “Addi­tional Resources” chapter.

A committed datatype can be deleted from the file by calling H5Ldelete which replaces H5Gunlink. See item i in the figure below. If one or more objects are still using the datatype, the committed datatype can­not be accessed with H5Topen, but will not be removed from the file until it is no longer used. H5Tget_­type and similar calls will return a transient copy of the datatype.



Figure 6-23. Life cycle of a datatype

	
[image: Dtypes_fig53.JPG]

 

 








 

Transient datatypes are initially modifiable. Note that when a datatype is copied or when it is written to the file (when an object is created) or the datatype is used to create a composite datatype, a copy of the current state of the datatype is used. If the datatype is then modified, the changes have no effect on data­sets, attributes, or datatypes that have already been created. See the figure below.

A transient datatype can be made read-only (H5Tlock). Note that the datatype is still transient, and oth­erwise does not change. A datatype that is immutable is read-only but cannot be closed except when the entire library is closed. The predefined types such as H5T_NATIVE_INT are immutable transient types.



Figure 6-24. Transient datatype states: modifiable, read-only, and immutable

	
[image: Dtypes_fig54.JPG]

 

 








 

To create two or more datasets that share a common datatype, first commit the datatype, and then use that datatype to create the datasets. See the example below.



Code Example 6-42. Create a shareable datatype

	
hid_t t1 = ...some transient type...;

H5Tcommit (file, “shared_type”, t1, H5P_DEFAULT, H5P_DEFAULT,

H5P_DEFAULT);

hid_t dset1 = H5Dcreate (file, “dset1”, t1, space, H5P_DEFAULT,

H5P_DEFAULT, H5P_DEFAULT);

hid_t dset2 = H5Dcreate (file, “dset2”, t1, space, H5P_DEFAULT,

H5P_DEFAULT, H5P_DEFAULT);

 





	
hid_t dset1 = H5Dopen (file, “dset1”, H5P_DEFAULT);

hid_t t2 = H5Dget_type (dset1);

hid_t dset3 = H5Dcreate (file, “dset3”, t2, space, H5P_DEFAULT,

H5P_DEFAULT, H5P_DEFAULT);

hid_t dset4 = H5Dcreate (file, “dset4”, t2, space, H5P_DEFAULT,

H5P_DEFAULT, H5P_DEFAULT);










Table 6-23. Datatype APIs

 	
Function


 	
Description





	
hid_t H5Topen (hid_t location, const char *name)


	
A committed datatype can be opened by calling this function, which returns a data­type identifier. The identifier should even­tually be released by calling H5Tclose() to release resources. The committed data­type returned by this function is read-only or a negative value is returned for failure. The location is either a file or group iden­tifier.





	
herr_t H5Tcommit (hid_t location, const char *name, hid_t type, H5P_DE­FAULT, H5P_DEFAULT, H5P_DEFAULT)


	
A transient datatype (not immutable) can be written to a file and turned into a com­mitted datatype by calling this function. The location is either a file or group iden­tifier and when combined with name refers to a new committed datatype.





	
htri_t H5Tcommitted (hid_t type)


	
A type can be queried to determine if it is a committed type or a transient type. If this function returns a positive value then the type is committed. Datasets which return committed datatypes with H5Dget_type() are able to share the datatype with other datasets in the same file.








 

6.10. Data Transfer: Datatype Conversion and Selection

When data is transferred (write or read), the storage layout of the data elements may be different. For example, an integer might be stored on disk in big-endian byte order and read into memory with little-endian byte order. In this case, each data element will be transformed by the HDF5 Library during the data transfer.

The conversion of data elements is controlled by specifying the datatype of the source and specifying the intended datatype of the destination. The storage format on disk is the datatype specified when the data­set is created. The datatype of memory must be specified in the library call.

In order to be convertible, the datatype of the source and destination must have the same datatype class (with the exception of enumeration type). Thus, integers can be converted to other integers, and floats to other floats, but integers cannot (yet) be converted to floats. For each atomic datatype class, the possible conversions are defined. An enumeration datatype can be converted to an integer or a floating-point num­ber datatype.

Basically, any datatype can be converted to another datatype of the same datatype class. The HDF5 Library automatically converts all properties. If the destination is too small to hold the source value then an over­flow or underflow exception occurs. If a handler is defined with the H5Pset_type_conv_cb function, it will be called. Otherwise, a default action will be performed. The table below summarizes the default actions.



Table 6-24. Default actions for datatype conversion exceptions

 	
Datatype Class


 	
Possible Exceptions


 	
Default Action





	
Integer


	
Size, offset, pad


	
 





	
Float


	
Size, offset, pad, ebits


	
 





	
String


	
Size


	
Truncates, zero terminate if required.    





	
Enumeration


	
No field


	
All bits set








 

For example, when reading data from a dataset, the source datatype is the datatype set when the dataset was created, and the destination datatype is the description of the storage layout in memory. The destina­tion datatype must be specified in the H5Dread call. The example below shows an example of reading a dataset of 32-bit integers. The figure below the example shows the data transformation that is performed.



Code Example 6-43. Specify the destination datatype with H5Dread

	
/* Stored as H5T_STD_BE32 */

/* Use the native memory order in the destination */

mem_type_id = H5Tcopy(H5T_NATIVE_INT);

status = H5Dread(dataset_id, mem_type_id, mem_space_id,

file_space_id,  xfer_plist_id,  buf );








 



Figure 6-25. Layout of a datatype conversion

	
Source Datatype: H5T_STD_BE32





	
[image: Dtypes_fig57a.JPG]

 

 





	
....





	
[image: dtypes_fig57_arrowWithText.JPG]

 

 





	
Destination Datatype: H5T_STD_LE32





	
[image: Dtypes_fig57b.JPG]

 

 





	
....








 

One thing to note in the example above is the use of the predefined native datatype H5T_NATIVE_INT. Recall that in this example, the data was stored as a 4-bytes in big-endian order. The application wants to read this data into an array of integers in memory. Depending on the system, the storage layout of mem­ory might be either big or little-endian, so the data may need to be transformed on some platforms and not on others. The H5T_NATIVE_INT type is set by the HDF5 Library to be the correct type to describe the storage layout of the memory on the system. Thus, the code in the example above will work correctly on any platform, performing a transformation when needed.

There are predefined native types for most atomic datatypes, and these can be combined in composite datatypes. In general, the predefined native datatypes should always be used for data stored in memory.




	
Storage Properties





	
Predefined native datatypes describe the storage properties of memory.








 

For composite datatypes, the component atomic datatypes will be converted. For a variable-length data­type, the source and destination must have compatible base datatypes. For a fixed-size string datatype, the length and padding of the strings will be converted. Variable-length strings are converted as variable-length datatypes.

For an array datatype, the source and destination must have the same rank and dimensions, and the base datatype must be compatible. For example an array datatype of 4 x 3 32-bit big-endian integers can be transferred to an array datatype of 4 x 3 little-endian integers, but not to a 3 x 4 array.

For an enumeration datatype, data elements are converted by matching the symbol names of the source and destination datatype. The figure below shows an example of how two enumerations with the same names and different values would be converted. The value ‘2’ in the source dataset would be converted to ‘0x0004’ in the destination.

If the source data stream contains values which are not in the domain of the conversion map then an over­flow exception is raised within the library.



Figure 6-26. An enum datatype conversion

	
[image: Dtypes_fig58.JPG]

 

 








 

The library also allows conversion from enumeration to a numeric datatype. A numeric datatype is either an integer or a floating-point number. This conversion can simplify the application program because the base type for an enumeration datatype is an integer datatype. The application program can read the data from a dataset of enumeration datatype in file into a memory buffer of numeric datatype. And it can write enumeration data from memory into a dataset of numeric datatype in file, too.

For compound datatypes, each field of the source and destination datatype is converted according to its type. The name of the fields must be the same in the source and the destination in order for the data to be converted.

The example below shows the compound datatypes shows sample code to create a compound datatype with the fields aligned on word boundaries (s1_tid) and with the fields packed (s2_tid). The former is suit­able as a description of the storage layout in memory, the latter would give a more compact store on disk. These types can be used for transferring data, with s2_tid used to create the dataset, and s1_tid used as the memory datatype.



Code Example 6-44. Create an aligned and packed compound datatype

	
typedef struct s1_t {

   int a;

   char b;

   double c;

} s1_t;

 

s1_tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));

 

H5Tinsert(s1_tid, “a_name”, HOFFSET(s1_t, a),

H5T_NATIVE_INT);

H5Tinsert(s1_tid, “b_name”, HOFFSET(s1_t, b),

H5T_NATIVE_CHAR);

H5Tinsert(s1_tid, “c_name”, HOFFSET(s1_t, c),

H5T_NATIVE_DOUBLE);

 

s2_tid = H5Tcopy(s1_tid);

H5Tpack(s2_tid);








 

When the data is transferred, the fields within each data element will be aligned according to the datatype specification. The figure below shows how one data element would be aligned in memory and on disk. Note that the size and byte order of the elements might also be converted during the transfer.

It is also possible to transfer some of the fields of compound datatypes. Based on the example above, the example below shows a compound datatype that selects the first and third fields of the s1_tid. The sec­ond datatype can be used as the memory datatype, in which case data is read from or written to these two fields, while skipping the middle field. The second figure below shows the layout for two data elements.



Figure 6-27. Alignment of a compound datatype

	
[image: Dtypes_fig60.JPG]

 

 








 



Code Example 6-45. Transfer some fields of a compound datatype

	
typedef struct s1_t {

   int a;

   char b;

   double c;

} s1_t;

 

typedef struct s2_t {   /* two fields from s1_t */

   int a;

   double c;

} s2_t;

 





	
s1_tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));

 

H5Tinsert(s1_tid, “a_name”, HOFFSET(s1_t, a),

H5T_NATIVE_INT);

H5Tinsert(s1_tid, “b_name”, HOFFSET(s1_t, b),

H5T_NATIVE_CHAR);

H5Tinsert(s1_tid, “c_name”, HOFFSET(s1_t, c),

H5T_NATIVE_DOUBLE);

 

s2_tid = H5Tcreate (H5T_COMPOUND, sizeof(s2_t));

 

H5Tinsert(s1_tid, “a_name”, HOFFSET(s2_t, a),

H5T_NATIVE_INT);

H5Tinsert(s1_tid, “c_name”, HOFFSET(s2_t, c),

H5T_NATIVE_DOUBLE);








 



Figure 6-28. Layout when an element is skipped

	
[image: Dtypes_fig62.JPG]

 

 








 

6.11. Text Descriptions of Datatypes: Conversion to and from

HDF5 provides a means for generating a portable and human-readable text description of a datatype and for generating a datatype from such a text description. This capability is particularly useful for creating complex datatypes in a single step, for creating a text description of a datatype for debugging purposes, and for creating a portable datatype definition that can then be used to recreate the datatype on many platforms or in other applications.

These tasks are handled by two functions provided in the HDF5 Lite high-level library:

•        H5LTtext_to_dtype         Creates an HDF5 datatype in a single step.

•        H5LTdtype_to_text         Translates an HDF5 datatype into a text description.

Note that this functionality requires that the HDF5 High-Level Library (H5LT) be installed.

While H5LTtext_to_dtype can be used to generate any sort of datatype, it is particularly useful for complex datatypes.

H5LTdtype_to_text is most likely to be used in two sorts of situations: when a datatype must be closely examined for debugging purpose or to create a portable text description of the datatype that can then be used to recreate the datatype on other platforms or in other applications.

These two functions work for all valid HDF5 datatypes except time, bitfield, and reference datatypes.

The currently supported text format used by H5LTtext_to_dtype and H5LTdtype_to_text is the data description language (DDL) and conforms to the HDF5 DDL. The portion of the HDF5 DDL that defines HDF5 datatypes appears below.



Code Example 6-46. The definition of HDF5 datatypes from the HDF5 DDL

	
<datatype> ::= <atomic_type> | <compound_type> |

                     <array_type> | <variable_length_type>

 

<atomic_type> ::= <integer> | <float> | <time> |

                        <string> | <bitfield> | <opaque> |

                        <reference> | <enum>

 





	
<integer> ::= H5T_STD_I8BE | H5T_STD_I8LE |

                     H5T_STD_I16BE | H5T_STD_I16LE |

                     H5T_STD_I32BE | H5T_STD_I32LE |

                     H5T_STD_I64BE | H5T_STD_I64LE |

                     H5T_STD_U8BE | H5T_STD_U8LE |

                     H5T_STD_U16BE | H5T_STD_U16LE |

                     H5T_STD_U32BE | H5T_STD_U32LE |

                     H5T_STD_U64BE | H5T_STD_U64LE |

                     H5T_NATIVE_CHAR | H5T_NATIVE_UCHAR |

                     H5T_NATIVE_SHORT | H5T_NATIVE_USHORT |

                     H5T_NATIVE_INT | H5T_NATIVE_UINT |

                     H5T_NATIVE_LONG | H5T_NATIVE_ULONG |

                     H5T_NATIVE_LLONG | H5T_NATIVE_ULLONG

 





	
<float> ::= H5T_IEEE_F32BE | H5T_IEEE_F32LE |

               H5T_IEEE_F64BE | H5T_IEEE_F64LE |

               H5T_NATIVE_FLOAT | H5T_NATIVE_DOUBLE |

               H5T_NATIVE_LDOUBLE

 

<time> ::= TBD

 





	
<string> ::= H5T_STRING { STRSIZE <strsize> ;

   STRPAD <strpad> ;

   CSET <cset> ;

   CTYPE <ctype> ;}

 

<strsize> ::= <int_value> | H5T_VARIABLE

<strpad> ::= H5T_STR_NULLTERM | H5T_STR_NULLPAD |

                  H5T_STR_SPACEPAD

<cset> ::= H5T_CSET_ASCII | H5T_CSET_UTF8

<ctype> ::= H5T_C_S1 | H5T_FORTRAN_S1

 





	
<bitfield> ::= TBD

 

<opaque> ::= H5T_OPAQUE { OPQ_SIZE <opq_size>;

OPQ_TAG <opq_tag>; }

opq_size ::= <int_value>

opq_tag ::= "<string>"

 

<reference> ::= Not supported

 





	
<compound_type> ::= H5T_COMPOUND { <member_type_def>+ }

<member_type_def> ::= <datatype> <field_name> <offset>opt;

<field_name> ::= "<identifier>"

<offset> ::= : <int_value>

 

<variable_length_type> ::= H5T_VLEN { <datatype> }

 





	
<array_type> ::= H5T_ARRAY { <dim_sizes> <datatype> }

<dim_sizes> ::= [<dimsize>] | [<dimsize>] <dim_sizes>

<dimsize> ::= <int_value>

 

<enum> ::= H5T_ENUM { <enum_base_type>; <enum_def>+ }

<enum_base_type> ::= <integer>

// Currently enums can only hold integer type data, but

// they may be expanded in the future to hold any

// datatype

<enum_def> ::= <enum_symbol> <enum_val>;

<enum_symbol> ::= "<identifier>"

<enum_val> ::= <int_value>








 

The definitions of opaque and compound datatype above are revised for HDF5 Release 1.8. In Release 1.6.5. and earlier, they were defined as follows:



Code Example 6-47. Old definitions of the opaque and compound datatypes

	
<opaque> ::= H5T_OPAQUE { <identifier> }

 

 

<compound_type> ::= H5T_COMPOUND { <member_type_def>+ }

<member_type_def> ::= <datatype> <field_name> ;

<field_name> ::= <identifier>








 

Examples

The code sample below illustrates the use of H5LTtext_to_dtype to generate a variable-length string datatype.



Code Example 6-48. Creating a variable-length string datatype from a text description

	
hid_t   dtype;

if((dtype = H5LTtext_to_dtype(“H5T_STRING {

                                                      STRSIZE H5T_VARIABLE;

                                                      STRPAD H5T_STR_NULLPAD;

                                                      CSET H5T_CSET_ASCII;

                                                      CTYPE H5T_C_S1;

                                                      }”, H5LT_DDL))<0)

goto out;








 

The code sample below illustrates the use of H5LTtext_to_dtype to generate a complex array data­type.



Code Example 6-49. Creating a complex array datatype from a text description

	
hid_t   dtype;

if((dtype = H5LTtext_to_dtype(“H5T_ARRAY { [5][7][13] H5T_ARRAY

                                                      { [17][19] H5T_COMPOUND

                                                         {                 

                                                            H5T_STD_I8BE

                                                            \“arr_compound_1\”;

                                                            H5T_STD_I32BE

                                                            \“arr_compound_2\”;

                                                         }

                                                      }

                                                   }”, H5LT_DDL))<0)

goto out;








 

 




7. HDF5 Dataspaces and Partial I/O

The HDF5 dataspace is a required component of an HDF5 dataset or attribute definition. The dataspace defines the size and shape of the dataset or attribute raw data. In other words, a dataspace defines the number of dimensions and the size of each dimension of the multidimensional array in which the raw data is represented. The dataspace must be defined when the dataset or attribute is created.

The dataspace is also used during dataset I/O operations, defining the elements of the dataset that partic­ipate in the I/O operation.

This chapter explains the dataspace object and its use in dataset and attribute creation and data transfer. It also describes selection operations on a dataspace used to implement sub-setting, sub-sampling, and scatter-gather access to datasets.

7.1. Dataspace (H5S) Function Summaries

This section provides a reference list of dataspace functions, the H5S APIs, with brief descriptions. The functions are presented in the following categories:

•        Dataspace management functions

•        Dataspace query functions

•        Dataspace selection functions: hyperslabs

•        Dataspace selection functions: points

The rest of the chapter will provide examples and explanations of how to use these functions.



Function Listing 7-1. Dataspace management functions

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Screate

h5screate_f


	
Creates a new dataspace of a specified type.





	
H5Scopy

h5scopy_f


	
Creates an exact copy of a dataspace.





	
H5Sclose

h5sclose_f


	
Releases and terminates access to a dataspace.





	
H5Sdecode

h5sdecode_f


	
Decode a binary object description of a dataspace and return a new object identifier.





	
H5Sencode

h5sencode


	
 Encode a dataspace object description into a binary buffer.





	
H5Screate_simple

h5screate_simple_f


	
Creates a new simple dataspace and opens it for access.





	
H5Sis_simple

h5sis_simple_f


	
Determines whether a dataspace is a simple dataspace.





	
H5Sextent_copy

h5sextent_copy_f


	
Copies the extent of a dataspace.





	
H5Sextent_equal

h5sextent_equal_f


	
Determines whether two dataspace extents are equal.





	
H5Sset_extent_simple

h5sset_extent_simple_f


	
Sets or resets the size of an existing dataspace.





	
H5Sset_extent_none

h5sset_extent_none_f


	
Removes the extent from a dataspace.










Function Listing 7-2. Dataspace query functions

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Sget_simple_extent_dims

h5sget_simple_extent_dims_f


	
Retrieves dataspace dimension size and maxi­mum size.





	
H5Sget_simple_extent_ndims

h5sget_simple_extent_ndims_f


	
Determines the dimensionality of a dataspace.





	
H5Sget_simple_extent_npoints

h5sget_simple_extent_npoints_f


	
Determines the number of elements in a dataspace.





	
H5Sget_simple_extent_type

h5sget_simple_extent_type_f


	
Determine the current class of a dataspace.










Function Listing 7-3. Dataspace selection functions: hyperslabs

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Soffset_simple

h5soffset_simple_f


	
Sets the offset of a simple dataspace.





	
H5Sget_select_type

h5sget_select_type_f


	
Determines the type of the dataspace selec­tion.





	
H5Sget_select_hyper_nblocks

h5sget_select_hyper_nblocks_f


	
Get number of hyperslab blocks.





	
H5Sget_select_hyper_blocklist

h5sget_select_hyper_blocklist_f


	
Gets the list of hyperslab blocks currently selected.





	
H5Sget_select_bounds

h5sget_select_bounds_f


	
Gets the bounding box containing the current selection.





	
H5Sselect_all

h5sselect_all_f


	
Selects the entire dataspace.





	
H5Sselect_none

h5sselect_none_f


	
Resets the selection region to include no ele­ments.





	
H5Sselect_valid

h5sselect_valid_f


	
Verifies that the selection is within the extent of the dataspace.





	
H5Sselect_hyperslab

h5sselect_hyperslab_f


	
Selects a hyperslab region to add to the cur­rent selected region.










Function Listing 7-4. Dataspace selection functions: points

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Sget_select_npoints

h5sget_select_npoints_f


	
Determines the number of elements in a dataspace selection.





	
H5Sget_select_elem_npoints

h5sget_select_elem_npoints_f


	
Gets the number of element points in the cur­rent selection.





	
H5Sget_select_elem_pointlist

h5sget_select_elem_pointlist_f


	
Gets the list of element points currently selected.





	
H5Sselect_elements

h5sselect_elements_f


	
Selects array elements to be included in the selection for a dataspace.








 

7.2. Definition of Dataspace Objects and the Dataspace Programming Model

This section introduces the notion of the HDF5 dataspace object and a programming model for creating and working with dataspaces.

7.2.1. Dataspace Objects

An HDF5 dataspace is a required component of an HDF5 dataset or attribute. A dataspace defines the size and the shape of a dataset’s or an attribute’s raw data. Currently, HDF5 supports the following types of the dataspaces:

•        Scalar dataspaces

•        Simple dataspaces

•        Null dataspaces

A scalar dataspace, H5S_SCALAR, represents just one element, a scalar. Note that the datatype of this one element may be very complex; example would be a compound structure with members being of any allowed HDF5 datatype, including multidimensional arrays, strings, and nested compound structures. By convention, the rank of a scalar dataspace is always 0 (zero); think of it geometrically as a single, dimen­sionless point, though that point may be complex.

A simple dataspace, H5S_SIMPLE, is a multidimensional array of elements. The dimensionality of the dataspace (or the rank of the array) is fixed and is defined at creation time. The size of each dimension can grow during the life time of the dataspace from the current size up to the maximum size. Both the current size and the maximum size are specified at creation time. The sizes of dimensions at any particular time in the life of a dataspace are called the current dimensions, or the dataspace extent. They can be queried along with the maximum sizes.

A null dataspace, H5S_NULL, contains no data elements. Note that no selections can be applied to a null dataset as there is nothing to select.

As shown in the UML diagram in the figure below, an HDF5 simple dataspace object has three attributes: the rank or number of dimensions; the current sizes, expressed as an array of length rank with each ele­ment of the array denoting the current size of the corresponding dimension; and the maximum sizes, expressed as an array of length rank with each element of the array denoting the maximum size of the corresponding dimension.



Figure 7-1. A simple dataspace

	
[image: Dspace_fig1new.JPG]

 

 








Note: A simple dataspace is defined by its rank, the current size of each dimension, and the maximum size of each dimension.

The size of a current dimension cannot be greater than the maximum size, which can be unlimited, speci­fied as H5S_UNLIMITED. Note that while the HDF5 file format and library impose no maximum size on an unlimited dimension, practically speaking its size will always be limited to the biggest integer available on the particular system being used.

Dataspace rank is restricted to 32, the standard limit in C on the rank of an array, in the current implemen­tation of the HDF5 Library. The HDF5 file format, on the other hand, allows any rank up to the maximum integer value on the system, so the library restriction can be raised in the future if higher dimensionality is required.

Note that most of the time Fortran applications calling HDF5 will work with dataspaces of rank less than or equal to seven, since seven i the maximum number of dimensions in a Fortran array. But dataspace rank is not limited to seven for Fortran applications.

The current dimensions of a dataspace, also referred to as the dataspace extent, define the bounding box for dataset elements that can participate in I/O operations.

7.2.2. Dataspace Programming Model

The programming model for creating and working with HDF5 dataspaces can be summarized as follows:

1.      Create a dataspace

2.      Use the dataspace to create a dataset in the file or to describe a data array in memory

3.      Modify the dataspace to define dataset elements that will participate in I/O operations

4.      Use the modified dataspace while reading/writing dataset raw data or to create a region refer­ence

5.      Close the dataspace when no longer needed

The rest of this section will address steps 1, 2, and 5 of the programming model; steps 3 and 4 will be dis­cussed in later sections of this chapter.

7.2.2.1. Creating a Dataspace

A dataspace can be created by calling the H5Screate function (h5screate_f in Fortran). Since the defi­nition of a simple dataspace requires the specification of dimensionality (or rank) and initial and maximum dimension sizes, the HDF5 Library provides a convenience API, H5Screate_simple (h5screate_sim­ple_f) to create a simple dataspace in one step.

The following examples illustrate the usage of these APIs.

7.2.2.2. Creating a Scalar Dataspace

A scalar dataspace is created with the H5Screate or the h5screate_f function.

In C:

hid_t space_id;

. . .

space_id = H5Screate(H5S_SCALAR);

In Fortran:

INTEGER(HID_T) :: space_id

. . .

CALL h5screate_f(H5S_SCALAR_F, space_id, error)

As mentioned above, the dataspace will contain only one element. Scalar dataspaces are used more often for describing attributes that have just one value. For example, the attribute temperature with the value Celsius is used to indicate that the dataset with this attribute stores temperature values using the Cel­sius scale.

7.2.2.3. Creating a Null Dataspace

A null dataspace is created with the H5Screate or the h5screate_f function.

In C:

hid_t space_id;

. . .

space_id = H5Screate(H5S_NULL);

In Fortran:

     (H5S_NULL not yet implemented in Fortran.)

INTEGER(HID_T) :: space_id

. . .

CALL h5screate_f(H5S_NULL_F, space_id, error)

As mentioned above, the dataspace will contain no elements.

7.2.2.4. Creating a Simple Dataspace

Let’s assume that an application wants to store a two-dimensional array of data, A(20,100). During the life of the application, the first dimension of the array can grow up to 30; there is no restriction on the size of the second dimension. The following steps are used to declare a dataspace for the dataset in which the array data will be stored.

In C:

hid_t space_id;

int rank = 2;

hsize_t current_dims[2] = {20, 100};

hsize_t max_dims[2] = {30, H5S_UNLIMITED};

. . .

space_id = H5Screate(H5S_SIMPLE);

H5Sset_extent_simple(space_id,rank,current_dims,max_dims);

In Fortran:

INTEGER(HID_T) :: space_id

INTEGER :: rank = 2

INTEGER(HSIZE_T) :: current dims = /( 20, 100)/

INTEGER(HSIZE_T) :: max_dims = /(30, H5S_UNLIMITED_F)/

INTEGER error

. . .

CALL h5screate_f(H5S_SIMPLE_F, space_id, error)

CALL h5sset_extent_simple_f(space_id, rank, current_dims, max_dims, error)

Alternatively, the convenience APIs H5Screate_simple/h5screate_simple_f can replace the H5Screate/h5screate_f and H5Sset_extent_simple/h5sset_extent_simple_f calls.

In C:

space_id = H5Screate_simple(rank, current_dims, max_dims);

In Fortran:

CALL h5screate_simple_f(rank, current_dims, space_id, error, max_dims)

In this example, a dataspace with current dimensions of 20 by 100 is created. The first dimension can be extended only up to 30. The second dimension, however, is declared unlimited; it can be extended up to the largest available integer value on the system.

Note that when there is a difference between the current dimensions and the maximum dimensions of an array, then chunking storage must be used. In other words, if the number of dimensions may change over the life of the dataset, then chunking must be used. If the array dimensions are fixed (if the number of cur­rent dimensions is equal to the maximum number of dimensions when the dataset is created), then con­tiguous storage can be used. For more information, see "Data Transfer."

Maximum dimensions can be the same as current dimensions. In such a case, the sizes of dimensions can­not be changed during the life of the dataspace object. In C, NULL can be used to indicate to the H5Scre­ate_simple and H5Sset_extent_simple functions that the maximum sizes of all dimensions are the same as the current sizes. In Fortran, the maximum size parameter is optional for h5screate_simple_f and can be omitted when the sizes are the same.

In C:

space_id = H5Screate_simple(rank, current_dims, NULL);

In Fortran:

CALL h5screate_f(rank, current_dims, space_id, error)

The created dataspace will have current and maximum dimensions of 20 and 100 correspondingly, and the sizes of those dimensions cannot be changed.

7.2.2.5. C versus Fortran Dataspaces

Dataspace dimensions are numbered from 1 to rank. HDF5 uses C storage conventions, assuming that the last listed dimension is the fastest-changing dimension and the first-listed dimension is the slowest chang­ing. The HDF5 file format storage layout specification adheres to the C convention and the HDF5 Library adheres to the same convention when storing dataspace dimensions in the file. This affects how C pro­grams and tools interpret data written from Fortran programs and vice versa. The example below illus­trates the issue.

When a Fortran application describes a dataspace to store an array as A(20,100), it specifies the value of the first dimension to be 20 and the second to be 100. Since Fortran stores data by columns, the first-listed dimension with the value 20 is the fastest-changing dimension and the last-listed dimension with the value 100 is the slowest-changing. In order to adhere to the HDF5 storage convention, the HDF5 Fortran wrapper transposes dimensions, so the first dimension becomes the last. The dataspace dimensions stored in the file will be 100,20 instead of 20,100 in order to correctly describe the Fortran data that is stored in 100 columns, each containing 20 elements.

When a Fortran application reads the data back, the HDF5 Fortran wrapper transposes the dimensions once more, returning the first dimension to be 20 and the second to be 100, describing correctly the sizes of the array that should be used to read data in the Fortran array A(20,100).

When a C application reads data back, the dimensions will come out as 100 and 20, correctly describing the size of the array to read data into, since the data was written as 100 records of 20 elements each. Therefore C tools such as h5dump and h5ls always display transposed dimensions and values for the data written by a Fortran application.

Consider the following simple example of equivalent C 3 x 5 and Fortran 5 x 3 arrays. As illustrated in the figure below, a C application will store a 3 x 5 2-dimensional array as three 5-element rows. In order to store the same data in the same order, a Fortran application must view the array as a 5 x 3 array with three 5-element columns. The dataspace of this dataset, as written from Fortran, will therefore be described as 5 x 3 in the application but stored and described in the file according to the C convention as a 3 x 5 array. This ensures that C and Fortran applications will always read the data in the order in which it was written. The HDF5 Fortran interface handles this transposition automatically.

In C (from h5_write.c):

#define NX     3                      /* dataset dimensions */

#define NY     5

. . .

int         data[NX][NY];          /* data to write */

. . .

/*

* Data  and output buffer initialization.

*/

for (j = 0; j < NX; j++) {

         for (i = 0; i < NY; i++)

            data[j][i] = i + 1 + j*NY;

}

/*

*  1  2  3  4  5

*  6  7  8  9 10

* 11 12 13 14 15

*/

. . .

dims[0] = NX;

dims[1] = NY;

dataspace = H5Screate_simple(RANK, dims, NULL);

For more information, see "h5_write.c."

In Fortran (from h5_write.f90):

INTEGER, PARAMETER :: NX = 3

INTEGER, PARAMETER :: NY = 5

. . .

INTEGER(HSIZE_T), DIMENSION(2) :: dims = (/3,5/) ! Dataset dimensions

---

INTEGER     ::    data(NX,NY)

. . .

!

! Initialize data

!

         do i = 1, NX

            do j = 1, NY

            data(i,j) = j + (i-1)*NY

          enddo

enddo

!

! Data

!

!  1  2  3  4  5

!  6  7  8  9 10

! 11 12 13 14 15

. . .

CALL h5screate_simple_f(rank, dims, dspace_id, error)

For more information, see "h5_write.f90."

In Fortran (from h5_write_tr.f90):

INTEGER, PARAMETER :: NX = 3

INTEGER, PARAMETER :: NY = 5

. . .

INTEGER(HSIZE_T), DIMENSION(2) :: dims = (/NY, NX/) ! Dataset dimensions

. . .

!

! Initialize data

!

do i = 1, NY

         do j = 1, NX

            data(i,j) = i + (j-1)*NY

         enddo

enddo

!

! Data

!

!  1  6  11

!  2  7  12

!  3  8  13

!  4  9  14

!  5 10  15

. . .

CALL h5screate_simple_f(rank, dims, dspace_id, error)

For more information, see "h5_write_tr.f90."



Figure 7-2. Comparing C and Fortran dataspaces

	
A dataset stored by a C program in a 3 x 5 array:





	
[image: Dspace_fig2a.JPG]

 

 





	
The same dataset stored by a Fortran program in a 5 x 3 array:





	
[image: Dspace_fig2b.JPG]

 

 





	
The first dataset above as written to an HDF5 file from C or the second dataset above as written from Fortran:





	
[image: Dspace_fig2c.JPG]

 

 





	
The first dataset above as written to an HDF5 file from Fortran:





	
[image: Dspace_fig2d.JPG]

 

 








Note: The HDF5 Library stores arrays along the fastest-changing dimension. This approach is often referred to as being “in C order.” C, C++, and Java work with arrays in row-major order. In other words, the row, or the last dimen­sion, is the fastest-changing dimension. Fortran, on the other hand, handles arrays in column-major order making the column, or the first dimension, the fastest-changing dimension. Therefore, the C and Fortran arrays illustrated in the top portion of this figure are stored identically in an HDF5 file. This ensures that data written by any language can be meaningfully read, interpreted, and manipulated by any other.

7.2.2.6. Finding Dataspace Characteristics

The HDF5 Library provides several APIs designed to query the characteristics of a dataspace.

The function H5Sis_simple (h5sis_simple_f) returns information about the type of a dataspace. This function is rarely used and currently supports only simple and scalar dataspaces.

To find out the dimensionality, or rank, of a dataspace, use H5Sget_simple_extent_ndims (h5sget_­simple_extent_ndims_f). H5Sget_simple_extent_dims can also be used to find out the rank. See the example below. If both functions return 0 for the value of rank, then the dataspace is scalar.

To query the sizes of the current and maximum dimensions, use H5Sget_simple_extent_dims (h5sget_simple_extent_dims_f).

The following example illustrates querying the rank and dimensions of a dataspace using these functions.

In C:

hid_t space_id;

int rank;

hsize_t  *current_dims;

hsize_t  *max_dims;

---------

 

rank=H5Sget_simple_extent_ndims(space_id);

(or rank=H5Sget_simple_extent_dims(space_id, NULL, NULL);)

current_dims= (hsize_t)malloc(rank*sizeof(hsize_t));

max_dims=(hsize_t)malloc(rank*sizeof(hsize_t));

H5Sget_simple_extent_dims(space_id, current_dims, max_dims);

Print values here for the previous example

 

7.3. Dataspaces and Data Transfer

Read and write operations transfer data between an HDF5 file on disk and in memory. The shape that the array data takes in the file and in memory may be the same, but HDF5 also allows users the ability to rep­resent data in memory in a different shape than in the file. If the shape of an array in the file and in mem­ory will be the same, then the same dataspace definition can be used for both. If the shape of an array in memory needs to be different than the shape in the file, then the dataspace definition for the shape of the array in memory can be changed. During a read operation, the array will be read into the different shape in memory, and during a write operation, the array will be written to the file in the shape specified by the dataspace in the file. The only qualification is that the number of elements read or written must be the same in both the source and the destination dataspaces.

Item a in the figure below shows a simple example of a read operation in which the data is stored as a 3 by 4 array in the file (item b) on disk, but the program wants it to be a 4 by 3 array in memory. This is accom­plished by setting the memory dataspace to describe the desired memory layout, as in item c. The read operation reads the data in the file array into the memory array.



Figure 7-3. Data layout before and after a read operation

	
[image: Dspace_fig4.JPG]

 

 










Figure 7-4. Moving data from disk to memory

	
[image: Dspace_fig5.JPG]

 

 








 

Both the source and destination are stored as contiguous blocks of storage with the elements in the order specified by the dataspace. The figure above shows one way the elements might be organized. In item a, the elements are stored as 3 blocks of 4 elements. The destination is an array of 12 elements in memory (see item c). As the figure suggests, the transfer reads the disk blocks into a memory buffer (see item b), and then writes the elements to the correct locations in memory. A similar process occurs in reverse when data is written to disk.

7.3.1. Data Selection

In addition to rearranging data, the transfer may select the data elements from the source and destina­tion.

Data selection is implemented by creating a dataspace object that describes the selected elements (within the hyper rectangle) rather than the whole array. Two dataspace objects with selections can be used in data transfers to read selected elements from the source and write selected elements to the destination. When data is transferred using the dataspace object, only the selected elements will be transferred.

This can be used to implement partial I/O, including:

•        Sub-setting - reading part of a large dataset

•        Sampling - reading selected elements (for example, every second element) of a dataset

•        Scatter-gather - read non-contiguous elements into contiguous locations (gather) or read contigu­ous elements into non-contiguous locations    (scatter) or both

To use selections, the following steps are followed:

1.      Get or define the dataspace for the source and destination

2.      Specify one or more selections for source and destination dataspaces

3.      Transfer data using the dataspaces with selections

 

A selection is created by applying one or more selections to a dataspace. A selection may override any other selections (H5T_SELECT_SET) or may be “Ored” with previous selections on the same dataspace (H5T_SELECT_OR). In the latter case, the resulting selection is the union of the selection and all previ­ously selected selections. Arbitrary sets of points from a dataspace can be selected by specifying an appro­priate set of selections.

Two selections are used in data transfer, so the source and destination must be compatible, as described below.

There are two forms of selection, hyperslab and point. A selection must be either a point selection or a set of hyperslab selections. Selections cannot be mixed.

The definition of a selection within a dataspace, not the data in the selection, cannot be saved to the file unless the selection definition is saved as a region reference. For more information, see "References to Dataset Regions."

7.3.1.1. Hyperslab Selection

A hyperslab is a selection of elements from a hyper rectangle. An HDF5 hyperslab is a rectangular pattern defined by four arrays. The four arrays are summarized in the table below.

The offset defines the origin of the hyperslab in the original dataspace.

The stride is the number of elements to increment between selected elements. A stride of ‘1’ is every ele­ment, a stride of ‘2’ is every second element, etc. Note that there may be a different stride for each dimen­sion of the dataspace. The default stride is 1.

The count is the number of elements in the hyperslab selection. When the stride is 1, the selection is a hyper rectangle with a corner at the offset and size count[0] by count[1] by.... When stride is greater than one, the hyperslab bounded by the offset and the corners defined by stride[n] * count[n].



Table 7-1. Hyperslab elements

 	
Parameter


 	
Description





	
Offset


	
The starting location for the hyperslab.





	
Stride


	
The number of elements to separate each element or block to be selected.





	
Count


	
The number of elements or blocks to select along each dimension.





	
Block


	
The size of the block selected from the dataspace.








 

The block is a count on the number of repetitions of the hyperslab. The default block size is ‘1’, which is one hyperslab. A block of 2 would be two hyperslabs in that dimension, with the second starting at off­set[n]+ (count[n] * stride[n]) + 1.

A hyperslab can be used to access a sub-set of a large dataset. The figure below shows an example of a hyperslab that reads a rectangle from the middle of a larger two dimensional array. The destination is the same shape as the source.



Figure 7-5. Access a sub-set of data with a hyperslab

	
[image: Dspace_fig6.JPG]

 

 








 

Hyperslabs can be combined to select complex regions of the source and destination. The figure below shows an example of a transfer from one non-rectangular region into another non-rectangular region. The source is defined as the union of two hyperslabs, and the destination is the union of three hyperslabs.



Figure 7-6. Build complex regions with hyperslab unions

	
[image: Dspace_fig7.JPG]

 

 








 

Hyperslabs may also be used to collect or scatter data from regular patterns. The figure below shows an example where the source is a repeating pattern of blocks, and the destination is a single, one dimensional array.



Figure 7-7. Use hyperslabs to combine or disperse data

	
[image: Dspace_fig8.JPG]

 

 








 

7.3.1.2. Select Points

The second type of selection is an array of points such as coordinates. Essentially, this selection is a list of all the points to include. The figure below shows an example of a transfer of seven elements from a two dimensional dataspace to a three dimensional dataspace using a point selection to specify the points.



Figure 7-8. Point selection

	
[image: Dspace_fig9.JPG]

 

 








 

7.3.1.3. Rules for Defining Selections

A selection must have the same number of dimensions (rank) as the dataspace it is applied to, although it may select from only a small region such as a plane from a 3D dataspace. Selections do not affect the extent of the dataspace, the selection may be larger than the dataspace. The boundaries of selections are reconciled with the extent at the time of the data transfer.

7.3.1.4. Data Transfer with Selections

A data transfer (read or write) with selections is the same as any read or write, except the source and des­tination dataspace have compatible selections.

During the data transfer, the following steps are executed by the library:

•        The source and destination dataspaces are checked to assure that the selections are compatible.

•        Each selection must be within the current extent of the dataspace. A selection may be defined to extend outside the current extent of the dataspace, but the dataspace cannot be accessed if the selection is not valid at the time of the access.

•        The total number of points selected in the source and destination must be the same. Note that the dimensionality of the source and destination can be different (for example, the source could be 2D, the destination 1D or 3D), and the shape can be different, but the num­ber of elements selected must be the same.

•        The data is transferred, element by element.

Selections have an iteration order for the points selected, which can be any permutation of the dimen­sions involved (defaulting to ‘C’ array order) or a specific order for the selected points, for selections com­posed of single array elements with H5Sselect_elements.

The elements of the selections are transferred in row-major, or C order. That is, it is assumed that the first dimension varies slowest, the second next slowest, and so forth. For hyperslab selections, the order can be any permutation of the dimensions involved (defaulting to ‘C’ array order). When multiple hyperslabs are combined, the hyperslabs are coalesced into contiguous reads and writes.

In the case of point selections, the points are read and written in the order specified.

7.3.2. Programming Model

 

7.3.2.1. Selecting Hyperslabs

Suppose we want to read a 3x4 hyperslab from a dataset in a file beginning at the element <1,2> in the dataset, and read it into a 7 x 7 x 3 array in memory. See the figure below. In order to do this, we must cre­ate a dataspace that describes the overall rank and dimensions of the dataset in the file as well as the posi­tion and size of the hyperslab that we are extracting from that dataset.



Figure 7-9. Selecting a hyperslab

	
[image: Dspace_fig10.JPG]

 

 








 

The code in the first example below illustrates the selection of the hyperslab in the file dataspace. The sec­ond example below shows the definition of the destination dataspace in memory. Since the in-memory dataspace has three dimensions, the hyperslab is an array with three dimensions with the last dimension being 1: <3,4,1>. The third example below shows the read using the source and destination dataspaces with selections.



Code Example 7-1. Selecting a hyperslab

	
/*

* get the file dataspace.

*/

dataspace = H5Dget_space(dataset); /* dataspace */

                                                   /* identifier */

 

/*

* Define hyperslab in the dataset.

*/





	
offset[0] = 1;

offset[1] = 2;

count[0]  = 3;

count[1]  = 4;

status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET,

offset, NULL, count, NULL);










Code Example 7-2. Defining the destination memory

	
/*

* Define memory dataspace.

*/

dimsm[0] = 7;

dimsm[1] = 7;

dimsm[2] = 3;

memspace = H5Screate_simple(3,dimsm,NULL);   

 





	
/*

* Define memory hyperslab.

*/

offset_out[0] = 3;

offset_out[1] = 0;

offset_out[2] = 0;

count_out[0]  = 3;

count_out[1]  = 4;

count_out[2]  = 1;

status = H5Sselect_hyperslab(memspace, H5S_SELECT_SET,

offset_out, NULL, count_out, NULL);










Code Example 7-3. A sample read specifying source and destination dataspaces

	
ret = H5Dread(dataset, H5T_NATIVE_INT, memspace,

dataspace, H5P_DEFAULT, data);








 

7.3.2.2. Example with Strides and Blocks

Consider an 8 x 12 dataspace into which we want to write eight 3 x 2 blocks in a two dimensional array from a source dataspace in memory that is a 50-element one dimensional array. See the figure below.



Figure 7-10. Write from a one dimensional array to a two dimensional array

	
[image: Dspace_fig14.JPG]

 

 








 

The example below shows code to write 48 elements from the one dimensional array to the file dataset starting with the second element in vector. The destination hyperslab has the following parameters: off­set=(0,1), stride=(4,3), count=(2,4), block=(3,2). The source has the parameters: offset=(1), stride=(1), count=(48), block=(1). After these operations, the file dataspace will have the values shown in item b in the figure above. Notice that the values are inserted in the file dataset in row-major order.



Code Example 7-4. Write from a one dimensional array to a two dimensional array

	
/* Select hyperslab for the dataset in the file, using

* 3 x 2 blocks, (4,3) stride (2,4) count starting at

* the position (0,1).

*/





	
offset[0]  = 0; offset[1]  = 1;

stride[0] = 4; stride[1] = 3;

count[0]  = 2; count[1]  = 4;    

block[0]  = 3; block[1]  = 2;

ret = H5Sselect_hyperslab(fid, H5S_SELECT_SET, offset,

stride, count, block);

 





	
/*

* Create dataspace for the first dataset.

*/

mid1 = H5Screate_simple(MSPACE1_RANK, dim1, NULL);

 

/*

* Select hyperslab.

* We will use 48 elements of the vector buffer starting

* at the second element. Selected elements are

* 1 2 3 . . . 48

*/





	
offset[0]  = 1;

stride[0] = 1;

count[0]  = 48;

block[0]  = 1;

ret = H5Sselect_hyperslab(mid1, H5S_SELECT_SET, offset,

stride, count, block);

 

/*

* Write selection from the vector buffer to the dataset

* in the file.

*/

ret = H5Dwrite(dataset, H5T_NATIVE_INT, midd1, fid,

H5P_DEFAULT, vector)








 

7.3.2.3. Selecting a Union of Hyperslabs

The HDF5 Library allows the user to select a union of hyperslabs and write or read the selection into another selection. The shapes of the two selections may differ, but the number of elements must be equal.



Figure 7-11. Transferring hyperslab unions

	
[image: Dspace_fig16a.jpg]

 





	
[image: Dspace_fig16b.jpg]

 





	
[image: Dspace_fig16c.jpg]

 

 








 

The figure above shows the transfer of a selection that is two overlapping hyperslabs from the dataset into a union of hyperslabs in the memory dataset. Note that the destination dataset has a different shape from the source dataset. Similarly, the selection in the memory dataset could have a different shape than the selected union of hyperslabs in the original file. For simplicity, the selection is that same shape at the des­tination.

To implement this transfer, it is necessary to:

1.      Get the source dataspace

2.      Define one hyperslab selection for the source

3.      Define a second hyperslab selection, unioned with the first

4.      Get the destination dataspace

5.      Define one hyperslab selection for the destination

6.      Define a second hyperslab seletion, unioned with the first

7.      Execute the data transfer (H5Dread or H5Dwrite) using the source and destination dataspaces

The example below shows example code to create the selections for the source dataspace (the file). The first hyperslab is size 3 x 4 and the left upper corner at the position (1,2). The hyperslab is a simple rectan­gle, so the stride and block are 1. The second hyperslab is 6 x 5 at the position (2,4). The second selection is a union with the first hyperslab (H5S_SELECT_OR).



Code Example 7-5. Select source hyperslabs

	
fid = H5Dget_space(dataset);

 

/*

* Select first hyperslab for the dataset in the file.

*/





	
offset[0] = 1; offset[1] = 2;

block[0] = 1; block[1] = 1;

stride[0] = 1; stride[1] = 1;

count[0]  = 3; count[1]  = 4;

ret = H5Sselect_hyperslab(fid, H5S_SELECT_SET, offset,

stride, count, block);





	
/*

* Add second selected hyperslab to the selection.

*/





	
offset[0] = 2; offset[1] = 4;

block[0] = 1; block[1] = 1;

stride[0] = 1; stride[1] = 1;

count[0]  = 6; count[1]  = 5;

ret = H5Sselect_hyperslab(fid, H5S_SELECT_OR, offset,

stride, count, block);








 

The example below shows example code to create the selection for the destination in memory. The steps are similar. In this example, the hyperslabs are the same shape, but located in different positions in the dataspace. The first hyperslab is 3 x 4 and starts at (0,0), and the second is 6 x 5 and starts at (1,2).

Finally, the H5Dread call transfers the selected data from the file dataspace to the selection in memory.

In this example, the source and destination selections are two overlapping rectangles. In general, any number of rectangles can be OR’ed, and they do not have to be contiguous. The order of the selections does not matter, but the first should use H5S_SELECT_SET; subsequent selections are unioned using H5S_SELECT_OR.

It is important to emphasize that the source and destination do not have to be the same shape (or number of rectangles). As long as the two selections have the same number of elements, the data can be trans­ferred.



Code Example 7-6. Select destination hyperslabs

	
/*

* Create memory dataspace.

*/

mid = H5Screate_simple(MSPACE_RANK, mdim, NULL);





	
 

/*

* Select two hyperslabs in memory. Hyperslabs has the

* same size and shape as the selected hyperslabs for

* the file dataspace.

*/





	
offset[0] = 0; offset[1] = 0;

block[0] = 1; block[1] = 1;

stride[0] = 1; stride[1] = 1;

count[0]  = 3; count[1]  = 4;

ret = H5Sselect_hyperslab(mid, H5S_SELECT_SET, offset,

stride, count, block);





	
offset[0] = 1; offset[1] = 2;

block[0] = 1; block[1] = 1;

stride[0] = 1; stride[1] = 1;

count[0]  = 6; count[1]  = 5;

ret = H5Sselect_hyperslab(mid, H5S_SELECT_OR, offset,

stride, count, block);

 

ret = H5Dread(dataset, H5T_NATIVE_INT, mid, fid,

H5P_DEFAULT, matrix_out);








 

7.3.2.4. Selecting a List of Independent Points

It is also possible to specify a list of elements to read or write using the function H5Sselect_elements. The procedure is similar to hyperslab selections.

1.      Get the source dataspace

2.      Set the selected points

3.      Get the destination dataspace

4.      Set the selected points

5.      Transfer the data using the source and destination dataspaces

The figure below shows an example where four values are to be written to four separate points in a two dimensional dataspace. The source dataspace is a one dimensional array with the values 53, 59, 61, 67. The destination dataspace is an 8 x 12 array. The elements are to be written to the points (0,0), (3,3), (3,5), and (5,6). In this example, the source does not require a selection. The example below the figure shows example code to implement this transfer.

A point selection lists the exact points to be transferred and the order they will be transferred. The source and destination are required to have the same number of elements. A point selection can be used with a hyperslab (for example, the source could be a point selection and the destination a hyperslab, or vice versa), so long as the number of elements selected are the same.



Figure 7-12. Write data to separate points

	
[image: Dspace_fig19a.jpg]

 





	
[image: Dspace_fig19b.jpg]

 





	
[image: Dspace_fig19c.jpg]

 

 










Code Example 7-7. Write data to separate points

	
hsize_t dim2[] = {4};       

int values[] = {53, 59, 61, 67};

 

/* Array to store selected points from the

* file dataspace

*/

hssize_t coord[4][2];





	
 

/*

* Create dataspace for the second dataset.

*/





	
mid2 = H5Screate_simple(1, dim2, NULL);

 

/*

* Select sequence of NPOINTS points in the file

* dataspace.

*/





	
coord[0][0] = 0; coord[0][1] = 0;

coord[1][0] = 3; coord[1][1] = 3;

coord[2][0] = 3; coord[2][1] = 5;

coord[3][0] = 5; coord[3][1] = 6;

 

ret = H5Sselect_elements(fid, H5S_SELECT_SET, NPOINTS,

(const hssize_t **)coord);

 

ret = H5Dwrite(dataset, H5T_NATIVE_INT, mid2, fid,

H5P_DEFAULT, values);








 

7.3.2.5. Combinations of Selections

Selections are a very flexible mechanism for reorganizing data during a data transfer. With different com­binations of dataspaces and selections, it is possible to implement many kinds of data transfers including sub-setting, sampling, and reorganizing the data. The table below gives some example combinations of source and destination, and the operations they implement.



Table 7-2. Selection operations

 	
Source


 	
Destination


 	
Operation





	
All


	
All


	
Copy whole array





	
All


	
All (different shape)


	
Copy and reorganize array





	
Hyperslab


	
All


	
Sub-set





	
Hyperslab


	
Hyperslab (same shape)


	
Selection





	
Hyperslab


	
Hyperslab (different shape)


	
Select and rearrange





	
Hyperslab with stride or block


	
All or hyperslab with stride 1


	
Sub-sample, scatter





	
Hyperslab


	
Points


	
Scatter





	
Points


	
Hyperslab or all


	
Gather





	
Points


	
Points (same)


	
Selection





	
Points


	
Points (different)


	
Reorder points








 

7.4. Dataspace Selection Operations and Data Transfer

This section is under construction.

7.5. References to Dataset Regions

Another use of selections is to store a reference to a region of a dataset. An HDF5 object reference object is a pointer to an object (dataset, group, or committed datatype) in the file. A selection can be used to cre­ate a pointer to a set of selected elements of a dataset, called a region reference. The selection can be either a point selection or a hyperslab selection.

A region reference is an object maintained by the HDF5 Library. The region reference can be stored in a dataset or attribute, and then read. The dataset or attribute is defined to have the special datatype, H5T_STD_REF_DSETREG.

To discover the elements and/or read the data, the region reference can be dereferenced. The H5Rde­frerence call returns an identifier for the dataset, and then the selected dataspace can be retrieved with H5Rget_select call. The selected dataspace can be used to read the selected data elements.

For more information, see "Reference."

7.5.1. Example Uses for Region References

Region references are used to implement stored pointers to data within a dataset. For example, features in a large dataset might be indexed by a table. See the figure below. This table could be stored as an HDF5 dataset with a compound datatype, for example, with a field for the name of the feature and a region ref­erence to point to the feature in the dataset. See the second figure below.



Figure 7-13. Features indexed by a table

	
[image: Dspace_fig21.JPG]

 

 








 



Figure 7-14. Storing the table with a compound datatype

	
[image: Dspace_fig22.JPG]

 

 








 

7.5.2. Creating References to Regions

To create a region reference:

1.      Create or open the dataset that contains the region

2.      Get the dataspace for the dataset

3.      Define a selection that specifies the region

4.      Create a region reference using the dataset and dataspace with selection

5.      Write the region reference(s) to the desired dataset or attribute

The figure below shows a diagram of a file with three datasets. Dataset D1 and D2 are two dimensional arrays of integers. Dataset R1 is a one dimensional array of references to regions in D1 and D2. The regions can be any valid selection of the dataspace of the target dataset.



Figure 7-15. A file with three datasets

	
[image: Dspace_fig23.JPG]

 

 








Note: In the figure above, R1 is a 1 D array of region pointers; each pointer refers to a selection in one dataset.

The example below shows code to create the array of region references. The references are created in an array of type hdset_reg_ref_t. Each region is defined as a selection on the dataspace of the dataset, and a reference is created using H5Rcreate(). The call to H5Rcreate() specifies the file, dataset, and the dataspace with selection.



Code Example 7-8. Create an array of region references

	
/* create an array of 4 region references */

hdset_reg_ref_t ref[4];

/*

* Create a reference to the first hyperslab in the first

* Dataset.

*/





	
offset[0] = 1; offset[1] = 1;

count[0] = 3; count[1] = 2;

status =  H5Sselect_hyperslab(space_id, H5S_SELECT_SET,

offset, NULL, count, NULL);

status = H5Rcreate(&ref[0], file_id, "D1",

H5R_DATASET_REGION, space_id);

 





	
/*

* The second reference is to a union of hyperslabs in

* the first Dataset

*/

 





	
offset[0] = 5;  offset[1] = 3;

count[0] = 1; count[1] = 4;

status = H5Sselect_none(space_id);

status = H5Sselect_hyperslab(space_id, H5S_SELECT_SET,

offset, NULL, count, NULL);

offset[0] = 6;   offset[1] = 5;

count[0] = 1;  count[1] = 2;





	
status = H5Sselect_hyperslab(space_id, H5S_SELECT_OR,

offset, NULL, count, NULL);

status = H5Rcreate(&ref[1], file_id, "D1",

H5R_DATASET_REGION, space_id);

 





	
/*

* the fourth reference is to a selection of points in

* the first Dataset

*/





	
status = H5Sselect_none(space_id);

coord[0][0] = 4; coord[0][1] = 4;

coord[1][0] = 2; coord[1][1] = 6;

coord[2][0] = 3; coord[2][1] = 7;

coord[3][0] = 1; coord[3][1] = 5;

coord[4][0] = 5; coord[4][1] = 8;

status = H5Sselect_elements(space_id, H5S_SELECT_SET,

num_points, (const hssize_t **)coord);

status = H5Rcreate(&ref[3], file_id, "D1",

H5R_DATASET_REGION, space_id);





	
/*

* the third reference is to a hyperslab in the second

* Dataset

*/

offset[0] = 0;  offset[1] = 0;

count[0] = 4; count[1] = 6;

status = H5Sselect_hyperslab(space_id2, H5S_SELECT_SET,

offset, NULL, count, NULL);

status = H5Rcreate(&ref[2], file_id, "D2",

H5R_DATASET_REGION, space_id2);








 

When all the references are created, the array of references is written to the dataset R1. The dataset is declared to have datatype H5T_STD_REF_DSETREG. See the example below.



Code Example 7-9. Write the array of references to a dataset

	
Hsize_t dimsr[1];

dimsr[0] = 4;

/*

* Dataset with references.

*/





	
spacer_id = H5Screate_simple(1, dimsr, NULL);

dsetr_id = H5Dcreate(file_id, "R1", H5T_STD_REF_DSETREG,

spacer_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

 





	
/*

* Write dataset with the references.

*/

status = H5Dwrite(dsetr_id, H5T_STD_REF_DSETREG, H5S_ALL,

H5S_ALL, H5P_DEFAULT, ref);








 

When creating region references, the following rules are enforced.

•        The selection must be a valid selection for the target dataset, just as when transferring data

•        The dataset must exist in the file when the reference is created (H5Rcreate)

•        The target dataset must be in the same file as the stored reference

7.5.3. Reading References to Regions

To retrieve data from a region reference, the reference must be read from the file, and then the data can be retrieved. The steps are:

1.      Open the dataset or attribute containing the reference objects

2.      Read the reference object(s)

3.      For each region reference, get the dataset (H5R_dereference) and dataspace (H5Rget_space)

4.      Use the dataspace and datatype to discover what space is needed to store the data, allocate the correct storage and create a dataspace and datatype to define the memory data layout

The example below shows code to read an array of region references from a dataset, and then read the data from the first selected region. Note that the region reference has information that records the data­set (within the file) and the selection on the dataspace of the dataset. After dereferencing the regions ref­erence, the datatype, number of points, and some aspects of the selection can be discovered. (For a union of hyperslabs, it may not be possible to determine the exact set of hyperslabs that has been combined.) The table below the code example shows the inquiry functions.

 

When reading data from a region reference, the following rules are enforced:

•        The target dataset must be present and accessible in the file

•        The selection must be a valid selection for the dataset



Code Example 7-10. Read an array of region references; read from the first selection

	
dsetr_id = H5Dopen (file_id, "R1", H5P_DEFAULT);

 

status = H5Dread(dsetr_id, H5T_STD_REF_DSETREG, H5S_ALL,

H5S_ALL, H5P_DEFAULT, ref_out);

 





	
/*

* Dereference the first reference.

*   1) get the dataset (H5Rdereference)

*   2) get the selected dataspace (H5Rget_region)

*/





	
dsetv_id = H5Rdereference(dsetr_id, H5R_DATASET_REGION,

&ref_out[0]);

space_id = H5Rget_region(dsetr_id, H5R_DATASET_REGION,

&ref_out[0]);

 

/*

*  Discover how many points and shape of the data

*/

ndims = H5Sget_simple_extent_ndims(space_id);

 





	
H5Sget_simple_extent_dims(space_id,dimsx,NULL);

 

/*

* Read and display hyperslab selection from the dataset.

*/

dimsy[0] = H5Sget_select_npoints(space_id);

spacex_id = H5Screate_simple(1, dimsy, NULL);

 





	
status = H5Dread(dsetv_id, H5T_NATIVE_INT, H5S_ALL,

space_id, H5P_DEFAULT, data_out);

printf("Selected hyperslab: ");

for (i = 0; i < 8; i++)

{   

   printf("\n");

   for (j = 0; j < 10; j++)

      printf("%d ", data_out[i][j]);

}

printf("\n");










Table 7-3. The inquiry functions

 	
Function


 	
Information





	
H5Sget_select_npoints


	
The number of elements in the selection (hyperslab or point selection).





	
H5Sget_select_bounds


	
The bounding box that encloses the selected points (hyperslab or point selection).





	
H5Sget_select_hyper_nblocks


	
The number of blocks in the selection.





	
H5Sget_select_hyper_blocklist


	
A list of the blocks in the selection.





	
H5Sget_select_elem_npoints


	
The number of points in the selection.





	
H5Sget_select_elem_pointlist


	
The points.








 

7.6. Sample Programs

This section contains the full programs from which several of the code examples in this chapter were derived. The h5dump output from the program’s output file immediately follows each program.

7.6.1. h5_write.c

----------

#include "hdf5.h"

 

#define H5FILE_NAME        "SDS.h5"

#define DATASETNAME "C Matrix"

#define NX     3                      /* dataset dimensions */

#define NY     5

#define RANK   2

 

int

main (void)

{

   hid_t       file, dataset;         /* file and dataset identifiers */

   hid_t       datatype, dataspace;   /* identifiers */

   hsize_t     dims[2];               /* dataset dimensions */

   herr_t      status;

   int         data[NX][NY];          /* data to write */

   int         i, j;

 

   /*

   * Data  and output buffer initialization.

   */

   for (j = 0; j < NX; j++) {

      for (i = 0; i < NY; i++)

         data[j][i] = i + 1 + j*NY;

   }

   /*

   *  1  2  3  4  5

   *  6  7  8  9 10

   * 11 12 13 14 15

   */

 

   /*

   * Create a new file using H5F_ACC_TRUNC access,

   * default file creation properties, and default file

   * access properties.

   */

   file = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

 

   /*

   * Describe the size of the array and create the data space for fixed

   * size dataset.

   */

   dims[0] = NX;

   dims[1] = NY;

   dataspace = H5Screate_simple(RANK, dims, NULL);

 

   /*

   * Create a new dataset within the file using defined dataspace and

   * datatype and default dataset creation properties.

   */

   dataset = H5Dcreate(file, DATASETNAME, H5T_NATIVE_INT, dataspace,

                           H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

 

 

   /*

   * Write the data to the dataset using default transfer properties.

   */

   status = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,

                        H5P_DEFAULT, data);

 

   /*

   * Close/release resources.

   */

   H5Sclose(dataspace);

   H5Dclose(dataset);

   H5Fclose(file);

 

   return 0;

}

 

 

 

SDS.out

-------

HDF5 "SDS.h5" {

GROUP "/" {

   DATASET "C Matrix" {

      DATATYPE  H5T_STD_I32BE

      DATASPACE  SIMPLE { ( 3, 5 ) / ( 3, 5 ) }

      DATA {

         1, 2, 3, 4, 5,

         6, 7, 8, 9, 10,

         11, 12, 13, 14, 15

      }

   }

}

}

 

7.6.2. h5_write.f90

------------

   PROGRAM DSETEXAMPLE

 

   USE HDF5 ! This module contains all necessary modules

 

   IMPLICIT NONE

 

   CHARACTER(LEN=7), PARAMETER :: filename = "SDSf.h5" ! File name

   CHARACTER(LEN=14), PARAMETER :: dsetname = "Fortran Matrix" ! Dataset name

   INTEGER, PARAMETER :: NX = 3

   INTEGER, PARAMETER :: NY = 5

 

   INTEGER(HID_T) :: file_id       ! File identifier

   INTEGER(HID_T) :: dset_id       ! Dataset identifier

   INTEGER(HID_T) :: dspace_id     ! Dataspace identifier

 

 

   INTEGER(HSIZE_T), DIMENSION(2) :: dims = (/3,5/) ! Dataset dimensions

   INTEGER     ::    rank = 2                       ! Dataset rank

   INTEGER     ::    data(NX,NY)

 

   INTEGER     ::   error ! Error flag

   INTEGER     :: i, j

 

 

   !

   ! Initialize data

   !

      do i = 1, NX

         do j = 1, NY

            data(i,j) = j + (i-1)*NY

         enddo

      enddo

   !

   ! Data

   !

   !  1  2  3  4  5

   !  6  7  8  9 10

   ! 11 12 13 14 15

 

   !

   ! Initialize FORTRAN interface.

   !

   CALL h5open_f(error)

 

   !

   ! Create a new file using default properties.

   !

   CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, file_id, error)

 

   !

   ! Create the dataspace.

   !

   CALL h5screate_simple_f(rank, dims, dspace_id, error)

 

   !

   ! Create and write dataset using default properties.

   !

   CALL h5dcreate_f(file_id, dsetname, H5T_NATIVE_INTEGER, dspace_id, &

                        dset_id, error, H5P_DEFAULT_F, H5P_DEFAULT_F, &

                        H5P_DEFAULT_F)

 

   CALL h5dwrite_f(dset_id, H5T_NATIVE_INTEGER, data, dims, error)

 

   !

   ! End access to the dataset and release resources used by it.

   !

   CALL h5dclose_f(dset_id, error)

 

   !

   ! Terminate access to the data space.

   !

   CALL h5sclose_f(dspace_id, error)

 

   !

   ! Close the file.

   !

   CALL h5fclose_f(file_id, error)

 

   !

   ! Close FORTRAN interface.

   !

   CALL h5close_f(error)

 

   END PROGRAM DSETEXAMPLE

 

SDSf.out

--------

HDF5 "SDSf.h5" {

GROUP "/" {

   DATASET "Fortran Matrix" {

      DATATYPE  H5T_STD_I32BE

      DATASPACE  SIMPLE { ( 5, 3 ) / ( 5, 3 ) }

      DATA {

         1, 6, 11,

         2, 7, 12,

         3, 8, 13,

         4, 9, 14,

         5, 10, 15

      }

   }

}

}

 

7.6.3. h5_write_tr.f90

---------------

   PROGRAM DSETEXAMPLE

 

   USE HDF5 ! This module contains all necessary modules

 

   IMPLICIT NONE

 

   CHARACTER(LEN=10), PARAMETER :: filename = "SDSf_tr.h5" ! File name

   CHARACTER(LEN=24), PARAMETER :: dsetname = "Fortran Transpose Matrix"

                                                         ! Dataset name

   INTEGER, PARAMETER :: NX = 3

   INTEGER, PARAMETER :: NY = 5

 

   INTEGER(HID_T) :: file_id       ! File identifier

   INTEGER(HID_T) :: dset_id       ! Dataset identifier

   INTEGER(HID_T) :: dspace_id     ! Dataspace identifier

 

 

   INTEGER(HSIZE_T), DIMENSION(2) :: dims = (/NY, NX/) ! Dataset dimensions

   INTEGER     ::    rank = 2                       ! Dataset rank

   INTEGER     ::    data(NY,NX)

 

   INTEGER     ::   error ! Error flag

   INTEGER     :: i, j

 

   !

   ! Initialize data

   !

      do i = 1, NY

         do j = 1, NX

            data(i,j) = i + (j-1)*NY

         enddo

      enddo

   !

   ! Data

   !

   !  1  6  11

   !  2  7  12

   !  3  8  13

   !  4  9  14

   !  5 10  15

 

   !

   ! Initialize FORTRAN interface.

   !

   CALL h5open_f(error)

 

   !

   ! Create a new file using default properties.

   !

   CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, file_id, error)

 

   !

   ! Create the dataspace.

   !

   CALL h5screate_simple_f(rank, dims, dspace_id, error)

 

   !

   ! Create and write dataset using default properties.

   !

   CALL h5dcreate_f(file_id, dsetname, H5T_NATIVE_INTEGER, dspace_id, &

                        dset_id, error, H5P_DEFAULT_F, H5P_DEFAULT_F, &

                        H5P_DEFAULT_F)

 

   CALL h5dwrite_f(dset_id, H5T_NATIVE_INTEGER, data, dims, error)

 

   !

   ! End access to the dataset and release resources used by it.

   !

   CALL h5dclose_f(dset_id, error)

 

   !

   ! Terminate access to the data space.

   !

   CALL h5sclose_f(dspace_id, error)

 

   !

   ! Close the file.

   !

   CALL h5fclose_f(file_id, error)

 

   !

   ! Close FORTRAN interface.

   !

   CALL h5close_f(error)

 

   END PROGRAM DSETEXAMPLE

 

 

 

SDSf_tr.out

-----------

HDF5 "SDSf_tr.h5" {

GROUP "/" {

   DATASET "Fortran Transpose Matrix" {

      DATATYPE  H5T_STD_I32LE

      DATASPACE  SIMPLE { ( 3, 5 ) / ( 3, 5 ) }

      DATA {

            1, 2, 3, 4, 5,

            6, 7, 8, 9, 10,

            11, 12, 13, 14, 15

      }

   }

}

}

 




8. HDF5 Attributes

An HDF5 attribute is a small metadata object describing the nature and/or intended usage of a primary data object. A primary data object may be a dataset, group, or committed datatype.

Attributes are assumed to be very small as data objects go, so storing them as standard HDF5 datasets would be quite inefficient. HDF5 attributes are therefore managed through a special attributes interface, H5A, which is designed to easily attach attributes to primary data objects as small datasets containing metadata information and to minimize storage requirements.

Consider, as examples of the simplest case, a set of laboratory readings taken under known temperature and pressure conditions of 18.0 degrees Celsius and 0.5 atmospheres, respectively. The temperature and pressure stored as attributes of the dataset could be described as the following name/value pairs:

temp=18.0

pressure=0.5

While HDF5 attributes are not standard HDF5 datasets, they have much in common:

•        An attribute has a user-defined dataspace and the included metadata has a user-assigned data­type

•        Metadata can be of any valid HDF5 datatype

•        Attributes are addressed by name

But there are some very important differences:

•        There is no provision for special storage such as compression or chunking

•        There is no partial I/O or sub-setting capability for attribute data

•        Attributes cannot be shared

•        Attributes cannot have attributes

•        Being small, an attribute is stored in the object header of the object it describes and is thus attached directly to that object

The “Special Issues” section describes how to handle attributes that are large in size and how to handle large numbers of attributes. For more information, see "Special Issues."

This chapter discusses or lists the following:

•        The HDF5 attributes programming model

•        H5A function summaries

•        Working with HDF5 attributes

•        The structure of an attribute

•        Creating, writing, and reading attributes

•        Accessing attributes by name or index

•        Obtaining information regarding an object’s attributes

•        Iterating across an object’s attributes

•        Deleting an attribute

•        Closing attributes

•        Special issues regarding attributes

In the following discussions, attributes are generally attached to datasets. Attributes attached to other pri­mary data objects such as groups or committed datatypes are handled in exactly the same manner.

8.1. Programming Model for Attributes

The figure below shows the UML model for an HDF5 attribute and its associated dataspace and datatype.



Figure 8-1. The UML model for an HDF5 attribute

	
[image: UML_Attribute.jpg]

 

 








 

Creating an attribute is similar to creating a dataset. To create an attribute, the application must specify the object to which the attribute is attached, the datatype and dataspace of the attribute data, and the attribute creation property list.

The following steps are required to create and write an HDF5 attribute:

1.      Obtain the object identifier for the attribute’s primary data object

2.      Define the characteristics of the attribute and specify the attribute creation property list

•        Define the datatype

•        Define the dataspace

•        Specify the attribute creation property list

3.      Create the attribute

4.      Write the attribute data (optional)

5.      Close the attribute (and datatype, dataspace, and attribute creation property list, if necessary)

6.      Close the primary data object (if appropriate)

8.1.1. To Open and Read or Write an Existing Attribute

The following steps are required to open and read/write an existing attribute. Since HDF5 attributes allow no partial I/O, you need specify only the attribute and the attribute’s memory datatype to read it:

1.      Obtain the object identifier for the attribute’s primary data object

2.      Obtain the attribute’s name or index

3.      Open the attribute

•        Get attribute dataspace and datatype (optional)

4.      Specify the attribute’s memory type

5.      Read and/or write the attribute data

6.      Close the attribute

7.      Close the primary data object (if appropriate)

8.2. Attribute (H5A) Function Summaries

Functions that can be used with attributes (H5A functions) and functions that can be used with property lists (H5P functions) are listed below.



Function Listing 8-1. Attribute functions (H5A)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Acreate

h5acreate_f


	
Creates a dataset as an attribute of another group, dataset, or committed datatype. The C function is a macro: see “API Compatibility Macros in HDF5.”





	
H5Acreate_by_name

h5acreate_by_name_f


	
Creates an attribute attached to a specified object.





	
H5Aexists

h5aexists_f


	
Determines whether an attribute with a given name exists on an object.





	
H5Aexists_by_name

h5aexists_by_name_f


	
Determines whether an attribute with a given name exists on an object.





	
H5Aclose

h5aclose_f


	
Closes the specified attribute.





	
H5Adelete

h5adelete_f


	
Deletes an attribute.





	
H5Adelete_by_idx

h5adelete_by_idx_f


	
Deletes an attribute from an object according to index order.





	
H5Adelete_by_name

h5adelete_by_name_f


	
Removes an attribute from a specified loca­tion.





	
H5Aget_create_plist

h5aget_create_plist_f


	
Gets an attribute creation property list identi­fier.





	
H5Aget_info

h5aget_info_f


	
Retrieves attribute information by attribute identifier.





	
H5Aget_info_by_idx

h5aget_info_by_idx_f


	
Retrieves attribute information by attribute index position.





	
H5Aget_info_by_name

h5aget_info_by_name_f


	
Retrieves attribute information by attribute name.





	
H5Aget_name

h5aget_name_f


	
Gets an attribute name.





	
H5Aget_name_by_idx

h5aget_name_by_idx_f


	
Gets an attribute name by attribute index position.





	
H5Aget_space

h5aget_space_f


	
Gets a copy of the dataspace for an attribute.





	
H5Aget_storage_size

h5aget_storage_size_f


	
Returns the amount of storage required for an attribute.





	
H5Aget_type

h5aget_type_f


	
Gets an attribute datatype.





	
H5Aiterate

(no Fortran subroutine)


	
Calls a user’s function for each attribute attached to a data object. The C function is a macro: see “API Compatibility Macros in HDF5.”





	
H5Aiterate_by_name

(no Fortran subroutine)


	
Calls user-defined function for each attribute on an object.





	
H5Aopen

h5aopen_f


	
Opens an attribute for an object specified by object identifier and attribute name.





	
H5Aopen_by_idx

h5aopen_by_idx_f


	
Opens an existing attribute that is attached to an object specified by location and name.





	
H5Aopen_by_name

h5aopen_by_name_f


	
Opens an attribute for an object by object name and attribute name.





	
H5Aread

h5aread_f


	
Reads an attribute.





	
H5Arename

h5arename_f


	
Renames an attribute.





	
H5Arename_by_name

h5arename_by_name_f


	
Renames an attribute.





	
H5Awrite

H5awrite_f


	
Writes an attribute.










Function Listing 8-2. Attribute creation property list functions (H5P)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Pset_char_encoding

h5pset_char_encoding_f


	
Sets the character encoding used to encode a string. Use to set ASCII or UTF-8 character encoding for object names.





	
H5Pget_char_encoding

h5pget_char_encoding_f


	
Retrieves the character encoding used to cre­ate a string.





	
H5Pget_attr_creation_order

h5pget_attr_creation_order_f


	
Retrieves tracking and indexing settings for attribute creation order.





	
H5Pget_attr_phase_change

h5pget_attr_phase_change_f


	
Retrieves attribute storage phase change thresholds.





	
H5Pset_attr_creation_order

h5pget_attr_creation_order_f


	
Sets tracking and indexing of attribute cre­ation order.





	
H5Pset_attr_phase_change

h5pset_attr_phase_change_f


	
Sets attribute storage phase change thresh­olds.








 

8.3. Working with Attributes

8.3.1. The Structure of an Attribute

An attribute has two parts: name and value(s).

HDF5 attributes are sometimes discussed as name/value pairs in the form name=value.

An attribute’s name is a null-terminated ASCII or UTF-8 character string. Each attribute attached to an object has a unique name.

The value portion of the attribute contains one or more data elements of the same datatype.

HDF5 attributes have all the characteristics of HDF5 datasets except that there is no partial I/O capability. In other words, attributes can be written and read only in full with no sub-setting.

8.3.2. Creating, Writing, and Reading Attributes

If attributes are used in an HDF5 file, these functions will be employed: H5Acreate, H5Awrite, and H5Aread. H5Acreate and H5Awrite are used together to place the attribute in the file. If an attribute is to be used and is not currently in memory, H5Aread generally comes into play usually in concert with one each of the H5Aget_* and H5Aopen_* functions.

To create an attribute, call H5Acreate:

hid_t H5Acreate (hid_t loc_id, const char *name,

            hid_t type_id, hid_t space_id, hid_t create_plist,

            hid_t access_plist)

loc_id identifies the object (dataset, group, or committed datatype) to which the attribute is to be attached. name, type_id, space_id, and create_plist convey, respectively, the attribute’s name, datatype, dataspace, and attribute creation property list. The attribute’s name must be locally unique: it must be unique within the context of the object to which it is attached.

H5Acreate creates the attribute in memory. The attribute does not exist in the file until H5Awrite writes it there.

To write or read an attribute, call H5Awrite or H5Aread, respectively:

herr_t H5Awrite (hid_t attr_id, hid_t mem_type_id,

            const void *buf)

herr_t H5Aread (hid_t attr_id, hid_t mem_type_id,

            void *buf)

attr_id identifies the attribute while mem_type_id identifies the in-memory datatype of the attribute data.

H5Awrite writes the attribute data from the buffer buf to the file. H5Aread reads attribute data from the file into buf.

The HDF5 Library converts the metadata between the in-memory datatype, mem_type_id, and the in-file datatype, defined when the attribute was created, without user intervention.

8.3.3. Accessing Attributes by Name or Index

Attributes can be accessed by name or index value. The use of an index value makes it possible to iterate through all of the attributes associated with a given object.

To access an attribute by its name, use the H5Aopen_by_name function. H5Aopen_by_name returns an attribute identifier that can then be used by any function that must access an attribute such as H5Aread.Use the function H5Aget_name to determine an attribute’s name.

To access an attribute by its index value, use the H5Aopen_by_idx function. To determine an attribute index value when it is not already known, use the H5Oget_info function. H5Aopen_by_idx is generally used in the course of opening several attributes for later access. Use H5Aiterate if the intent is to per­form the same operation on every attribute attached to an object.

8.3.4. Obtaining Information Regarding an Object’s Attributes

In the course of working with HDF5 attributes, one may need to obtain any of several pieces of informa­tion:

•        An attribute name

•        The dataspace of an attribute

•        The datatype of an attribute

•        The number of attributes attached to an object

To obtain an attribute’s name, call H5Aget_name with an attribute identifier, attr_id:

ssize_t H5Aget_name (hid_t attr_id, size_t buf_size,

            char *buf)

As with other attribute functions, attr_id identifies the attribute; buf_size defines the size of the buf­fer; and buf is the buffer to which the attribute’s name will be read.

If the length of the attribute name, and hence the value required for buf_size, is unknown, a first call to H5Aget_name will return that size. If the value of buf_size used in that first call is too small, the name will simply be truncated in buf. A second H5Aget_name call can then be used to retrieve the name in an appropriately-sized buffer.

To determine the dataspace or datatype of an attribute, call H5Aget_space or H5Aget_type, respec­tively:

hid_t H5Aget_space (hid_t attr_id)

 

hid_t H5Aget_type (hid_t attr_id)

H5Aget_space returns the dataspace identifier for the attribute attr_id.

H5Aget_type returns the datatype identifier for the attribute attr_id.

To determine the number of attributes attached to an object, use the H5Oget_info function. The func­tion signature is below.

herr_t H5Oget_info( hid_t object_id, H5O_info_t *object_info  )

The number of attributes will be returned in the object_info buffer. This is generally the preferred first step in determining attribute index values. If the call returns N, the attributes attached to the object object_id have index values of 0 through N-1.

8.3.5. Iterating across an Object’s Attributes

It is sometimes useful to be able to perform the identical operation across all of the attributes attached to an object. At the simplest level, you might just want to open each attribute. At a higher level, you might wish to perform a rather complex operation on each attribute as you iterate across the set.

To iterate an operation across the attributes attached to an object, one must make a series of calls to H5Aiterate:

herr_t H5Aiterate (hid_t obj_id, H5_index_t index_type,

            H5_iter_order_t order, hsize_t *n, H5A_operator2_t op,

            void *op_data)

H5Aiterate successively marches across all of the attributes attached to the object specified in loc_id, performing the operation(s) specified in op_func with the data specified in op_data on each attribute.

When H5Aiterate is called, index contains the index of the attribute to be accessed in this call. When H5Aiterate returns, index will contain the index of the next attribute. If the returned index is the null pointer, then all attributes have been processed, and the iterative process is complete.

op_func is a user-defined operation that adheres to the H5A_operator_t prototype. This prototype and certain requirements imposed on the operator’s behavior are described in the H5Aiterate entry in the HDF5 Reference Manual.

op_data is also user-defined to meet the requirements of op_func. Beyond providing a parameter with which to pass this data, HDF5 provides no tools for its management and imposes no restrictions.

8.3.6. Deleting an Attribute

Once an attribute has outlived its usefulness or is no longer appropriate, it may become necessary to delete it.

To delete an attribute, call H5Adelete:

herr_t H5Adelete (hid_t loc_id, const char *name)

H5Adelete removes the attribute name from the group, dataset, or committed datatype specified in loc_id.

H5Adelete must not be called if there are any open attribute identifiers on the object loc_id. Such a call can cause the internal attribute indexes to change; future writes to an open attribute would then pro­duce unintended results.

8.3.7. Closing an Attribute

As is the case with all HDF5 objects, once access to an attribute it is no longer needed, that attribute must be closed. It is best practice to close it as soon as practicable; it is mandatory that it be closed prior to the H5close call closing the HDF5 Library.

To close an attribute, call H5Aclose:

herr_t H5Aclose (hid_t attr_id)

H5Aclose closes the specified attribute by terminating access to its identifier, attr_id.

8.4. Special Issues

Some special issues for attributes are discussed below.

Large Numbers of Attributes Stored in Dense Attribute Storage

The dense attribute storage scheme was added in version 1.8 so that datasets, groups, and committed datatypes that have large numbers of attributes could be processed more quickly.

Attributes start out being stored in an object's header. This is known as compact storage. For more information, see "Storage Strategies."

As the number of attributes grows, attribute-related performance slows. To improve performance, dense attribute storage can be initiated with the H5Pset_attr_phase_change function. See the HDF5 Refer­ence Manual for more information.

When dense attribute storage is enabled, a threshold is defined for the number of attributes kept in com­pact storage. When the number is exceeded, the library moves all of the attributes into dense storage at another location. The library handles the movement of attributes and the pointers between the locations automatically. If some of the attributes are deleted so that the number falls below the threshold, then the attributes are moved back to compact storage by the library.

The improvements in performance from using dense attribute storage are the result of holding attributes in a heap and indexing the heap with a B-tree.

Note that there are some disadvantages to using dense attribute storage. One is that this is a new feature. Datasets, groups, and committed datatypes that use dense storage cannot be read by applications built with earlier versions of the library. Another disadvantage is that attributes in dense storage cannot be compressed.

Large Attributes Stored in Dense Attribute Storage

We generally consider the maximum size of an attribute to be 64K bytes. The library has two ways of stor­ing attributes larger than 64K bytes: in dense attribute storage or in a separate dataset. Using dense attri­bute storage is described in this section, and storing in a separate dataset is described in the next section.

To use dense attribute storage to store large attributes, set the number of attributes that will be stored in compact storage to 0 with the H5Pset_attr_phase_change function. This will force all attributes to be put into dense attribute storage and will avoid the 64KB size limitation for a single attribute in compact attribute storage.

The example code below illustrates how to create a large attribute that will be kept in dense storage.



Code Example 8-1. Create a large attribute in dense storage

	
/*

* Test use of dense attribute

*/





	
#define N 82000000

#include "hdf5.h"

#include <stdio.h>

#include <stdlib.h>

 

int main(){

 





	
hid_t fid, gid, sid, aid, gpid, fpid;

hsize_t dims[] = {N};

double *buf;

int i;

herr_t status;

 





	
buf = (double *) malloc(sizeof(double) * N);

for (i=0; i <N; i++) { buf[i] = -100.0; }

fpid = H5Pcreate (H5P_FILE_ACCESS);

status = H5Pset_libver_bounds (fpid, H5F_LIBVER_LATEST,

H5F_LIBVER_LATEST);

fid = H5Fcreate("adense.h5", H5F_ACC_TRUNC, H5P_DEFAULT,

fpid);

gpid = H5Pcreate (H5P_GROUP_CREATE);

status = H5Pset_attr_phase_change (gpid, 0, 0);

 





	
gid = H5Gcreate(fid, "testgrp", H5P_DEFAULT, gpid,

H5P_DEFAULT);

sid = H5Screate_simple(1, dims, NULL);

 

aid = H5Acreate(gid, "bar", H5T_NATIVE_DOUBLE, sid,

H5P_DEFAULT, H5P_DEFAULT);

status = H5Awrite(aid, H5T_NATIVE_DOUBLE, buf);

 





	
/* If you remove these two lines, it doesn't crash */

status = H5Aclose(aid);

status = H5Pclose (gpid);

status = H5Pclose (fpid);

status = H5Gclose(gid);

status = H5Fclose (fid);

 

return 0;

}








 

Large Attributes Stored in a Separate Dataset

In addition to dense attribute storage (see above), a large attribute can be stored in a separate dataset. In the figure below, DatasetA holds an attribute that is too large for the object header in Dataset1. By putting a pointer to DatasetA as an attribute in Dataset1, the attribute becomes available to those working with Dataset1.

This way of handling large attributes can be used in situations where backward compatibility is important and where compression is important. Applications built with versions before 1.8.x can read large attri­butes stored in separate datasets. Datasets can be compressed while attributes cannot.



Figure 8-2. A large or shared HDF5 attribute and its associated dataset(s)

	
[image: Shared_Attribute.jpg]

 

 








Note: In the figure above, DatasetA is an attribute of Dataset1 that is too large to store in Dataset1's header. Data­setA is associated with Dataset1 by means of an object reference pointer attached as an attribute to Dataset1. The attribute in DatasetA can be shared among multiple datasets by means of additional object reference pointers attached to additional datasets.

Shared Attributes

Attributes written and managed through the H5A interface cannot be shared. If shared attributes are required, they must be handled in the manner described above for large attributes and illustrated in the figure above.

Attribute Names

While any ASCII or UTF-8 character may be used in the name given to an attribute, it is usually wise to avoid the following kinds of characters:

•        Commonly used separators or delimiters such as slash, backslash, colon, and semi-colon (\, /, :, ;)

•        Escape characters

•        Wild cards such as asterisk and question mark (*, ?)

NULL can be used within a name, but HDF5 names are terminated with a NULL: whatever comes after the NULL will be ignored by HDF5.

The use of ASCII or UTF-8 characters is determined by the character encoding property. See H5Pset_char_encoding in the HDF5 Reference Manual.

No Special I/O or Storage

HDF5 attributes have all the characteristics of HDF5 datasets except the following:

•        Attributes are written and read only in full: there is no provision for partial I/O or sub-setting

•        No special storage capability is provided for attributes: there is no compression or chunking, and attributes are not extendable

 




9. HDF5 Error Handling

The HDF5 Library provides an error reporting mechanism for both the library itself and for user application programs. It can trace errors through function stack and error information like file name, function name, line number, and error description.

"Basic Error Handling Operations" discusses the basic error concepts such as error stack, error record, and error message and describes the related API functions. These concepts and func­tions are sufficient for application programs to trace errors inside the HDF5 Library.

"Advanced Error Handling Operations" talks about the advanced concepts of error class and error stack handle and talks about the related functions. With these concepts and functions, an application library or program using the HDF5 Library can have its own error report blended with HDF5’s error report.

Starting with Release 1.8, we have a new set of Error Handling API functions. For the purpose of backward compatibility with version 1.6 and before, we still keep the old API functions, H5Epush, H5Eprint, H5Ewalk, H5Eclear, H5Eget_auto, H5Eset_auto. These functions do not have the error stack as parameter. The library allows them to operate on the default error stack. Users do not have to change their code to catch up with the new Error API but are encouraged to do so.

The old API is similar to functionality discussed in "Basic Error Handling Operations". The functionality discussed in "Advanced Error Handling Operations", the ability of allowing applications to add their own error records, is the new design for the Error Handling API.

9.1. Programming Model for Error Handling

This section is under construction.

9.2. Error Handling (H5E) Function Summaries

Functions that can be used to handle errors (H5E functions) are listed below.



Function Listing 9-1. Error handling functions (H5E)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Eauto_is_v2

(no Fortran subroutine)


	
Determines the type of error stack.





	
H5Eclear

h5eclear_f


	
Clears the error stack for the current thread. The C function is a macro: see “API Compati­bility Macros in HDF5.”





	
H5Eclear_stack

(no Fortran subroutine)


	
Clears the error stack for the current thread.





	
H5Eclose_msg

(no Fortran subroutine)


	
Closes an error message identifier.





	
H5Eclose_stack

(no Fortran subroutine)


	
Closes object handle for error stack.





	
H5Ecreate_msg

(no Fortran subroutine)


	
Add major error message to an error class.





	
H5Eget_auto

h5eget_auto_f


	
Returns the current settings for the automatic error stack traversal function and its data. The C function is a macro: see “API Compatibility Macros in HDF5.”





	
H5Eget_class_name

(no Fortran subroutine)


	
Retrieves error class name.





	
H5Eget_current_stack

(no Fortran subroutine)


	
Registers the current error stack.





	
H5Eget_msg

(no Fortran subroutine)


	
Retrieves an error message.





	
H5Eget_num

(no Fortran subroutine)


	
Retrieves the number of error messages in an error stack.





	
H5Epop

(no Fortran subroutine)


	
Deletes specified number of error messages from the error stack.





	
H5Eprint

h5eprint_f


	
Prints the error stack in a default manner. The C function is a macro: see “API Compatibility Macros in HDF5.”





	
H5Epush

(no Fortran subroutine)


	
Pushes new error record onto error stack. The C function is a macro: see “API Compatibility Macros in HDF5.”





	
H5Eregister_class

(no Fortran subroutine)


	
Registers a client library or application pro­gram to the HDF5 error API.





	
H5Eset_auto

h5eset_auto_f


	
Turns automatic error printing on or off. The C function is a macro: see “API Compatibility Macros in HDF5.”





	
H5Eset_current_stack

(no Fortran subroutine)


	
Replaces the current error stack.





	
H5Eunregister_class

(no Fortran subroutine)


	
Removes an error class.





	
H5Ewalk

(no Fortran subroutine)


	
Walks the error stack for the current thread, calling a specified function. The C function is a macro: see “API Compatibility Macros in HDF5.”








 

9.3. Basic Error Handling Operations

Let us first try to understand the error stack. An error stack is a collection of error records.   Error records can be pushed onto or popped off the error stack. By default, when an error occurs deep within the HDF5 Library, an error record is pushed onto an error stack and that function returns a failure indication. Its caller detects the failure, pushes another record onto the stack, and returns a failure indication. This con­tinues until the API function called by the application returns a failure indication. The next API function being called will reset the error stack. All HDF5 Library error records belong to the same error class. For more information, see "Advanced Error Handling Operations."

9.3.1. Error Stack and Error Message

In normal circumstances, an error causes the stack to be printed on the standard error stream automati­cally. This automatic error stack is the library’s default stack. For all the functions in this section, whenever an error stack ID is needed as a parameter, H5E_DEFAULT can be used to indicate the library’s default stack. The first error record of the error stack, number #000, is produced by the API function itself and is usually sufficient to indicate to the application what went wrong.

Example: An Error Report

If an application calls H5Tclose on a predefined datatype, then the message in the example below is printed on the standard error stream. This is a simple error that has only one component, the API func­tion; other errors may have many components.



Code Example 9-1. An error report

	
HDF5-DIAG: Error detected in HDF5 (1.6.4) thread 0.

   #000: H5T.c line 462 in H5Tclose(): predefined datatype

      major: Function argument

      minor: Bad value








 

In the example above, we can see that an error record has a major message and a minor message. A major message generally indicates where the error happens. The location can be a dataset or a dataspace, for example. A minor message explains further details of the error. An example is “unable to open file”. Another specific detail about the error can be found at the end of the first line of each error record. This error description is usually added by the library designer to tell what exactly goes wrong. In the example above, the “predefined datatype” is an error description.

9.3.2. Print and Clear an Error Stack

Besides the automatic error report, the error stack can also be printed and cleared by the functions H5Eprint() and H5Eclear_stack(). If an application wishes to make explicit calls to H5Eprint() to print the error stack, the automatic printing should be turned off to prevent error messages from being displayed twice (see H5Eset_auto() below).

To print an error stack:

herr_t H5Eprint(hid_t error_stack, FILE * stream)

This function prints the error stack specified by error_stack on the specified stream, stream. If the error stack is empty, a one-line message will be printed. The following is an example of such a message. This message would be generated if the error was in the HDF5 Library.

HDF5-DIAG: Error detected in HDF5 Library version: 1.5.62 thread 0.

To clear an error stack:

herr_t H5Eclear_stack(hid_t error_stack)

The H5Eclear_stack function shown above clears the error stack specified by error_stack. H5E_DE­FAULT can be passed in to clear the current error stack. The current stack is also cleared whenever an API function is called; there are certain exceptions to this rule such as H5Eprint().

9.3.3. Mute Error Stack

Sometimes an application calls a function for the sake of its return value, fully expecting the function to fail; sometimes the application wants to call H5Eprint() explicitly. In these situations, it would be mis­leading if an error message were still automatically printed. Using the H5Eset_auto() function can con­trol the automatic printing of error messages.

To enable or disable automatic printing of errors: 

herr_t H5Eset_auto(hid_t error_stack, H5E_auto_t func,

            void *client_data)

The H5Eset_auto function can be used to turns on or off the automatic printing of errors for the error stack specified by error_stack. When turned on (non-null func pointer), any API function which returns an error indication will first call func, passing it client_data as an argument. When the library is first initialized the auto printing function is set to H5Eprint() (cast appropriately) and client_data is the standard error stream pointer, stderr.

To see the current settings:

herr_t H5Eget_auto(hid_t error_stack, H5E_auto_t * func,

            void **client_data)

The function above returns the current settings for the automatic error stack traversal function, func, and its data, client_data. If either or both of the arguments are null, then the value is not returned.

Example: Error Control

An application can temporarily turn off error messages while “probing” a function. See the example below.



Code Example 9-2. Turn off error messages while probing a function

	
/* Save old error handler */

H5E_auto2_t  oldfunc;

void *old_client_data;

 

H5Eget_auto(error_stack, &old_func, &old_client_data);

 





	
/* Turn off error handling */

H5Eset_auto(error_stack, NULL, NULL);

 

/* Probe. Likely to fail, but that’s okay */

status = H5Fopen (......);

 

/* Restore previous error handler */

H5Eset_auto(error_stack, old_func, old_client_data);








 

Or automatic printing can be disabled altogether and error messages can be explicitly printed.



Code Example 9-3. Disable automatic printing and explicitly print error messages

	
/* Turn off error handling permanently */

H5Eset_auto(error_stack, NULL, NULL);

 

/* If failure, print error message */

if (H5Fopen (....)<0) {

   H5Eprint(H5E_DEFAULT, stderr);

   exit (1);

}








 

9.3.4. Customized Printing of an Error Stack

Applications are allowed to define an automatic error traversal function other than the default H5Eprint(). For instance, one can define a function that prints a simple, one-line error message to the standard error stream and then exits. The first example below defines a such a function. The second exam­ple below installs the function as the error handler.



Code Example 9-4. Defining a function to print a simple error message

	
herr_t

my_hdf5_error_handler(void *unused)

{

   fprintf (stderr, “An HDF5 error was detected. Bye.\n”);

   exit (1);

}










Code Example 9-5. The user-defined error handler

	
H5Eset_auto(H5E_DEFAULT, my_hdf5_error_handler, NULL);








 

9.3.5. Walk through the Error Stack

The H5Eprint() function is actually just a wrapper around the more complex H5Ewalk() function which traverses an error stack and calls a user-defined function for each member of the stack. The exam­ple below shows how H5Ewalk is used.

herr_t H5Ewalk(hid_t err_stack, H5E_direction_t direction,

            H5E_walk_t func, void *client_data)

The error stack err_stack is traversed and func is called for each member of the stack. Its arguments are an integer sequence number beginning at zero (regardless of direction) and the client_data pointer. If direction is H5E_WALK_UPWARD, then traversal begins at the inner-most function that detected the error and concludes with the API function. Use H5E_WALK_DOWNWARD for the opposite order.

9.3.6. Traverse an Error Stack with a Callback Function

An error stack traversal callback function takes three arguments: n is a sequence number beginning at zero for each traversal, eptr is a pointer to an error stack member, and client_data is the same pointer used in the example above passed to H5Ewalk(). See the example below.

typedef herr_t (*H5E_walk_t)(unsigned n, H5E_error2_t *eptr,

            void *client_data)

The H5E_error2_t structure is shown below.

typedef struct {

            hid_t cls_id;

            hid_t maj_num;

            hid_t min_num;

            unsigned line;

            const char *func_name;

            const char *file_name;

            const char *desc;

} H5E_error2_t;

The maj_num and min_num are major and minor error IDs, func_name is the name of the function where the error was detected, file_name and line locate the error within the HDF5 Library source code, and desc points to a description of the error.

Example: Callback Function

The following example shows a user-defined callback function.



Code Example 9-6. A user-defined callback function

	
#define MSG_SIZE       64

 

herr_t

custom_print_cb(unsigned n, const H5E_error2_t *err_desc,

void* client_data)





	
{

   FILE               *stream  = (FILE *)client_data;

   char               maj[MSG_SIZE];

   char               min[MSG_SIZE];

   char               cls[MSG_SIZE];

   const int               indent = 4;





	
 

   /* Get descriptions for the major and minor error

   * numbers

   */

   if(H5Eget_class_name(err_desc->cls_id, cls, MSG_SIZE)<0)

         TEST_ERROR;

 

   if(H5Eget_msg(err_desc->maj_num, NULL, maj, MSG_SIZE)<0)

         TEST_ERROR;

 





	
   if(H5Eget_msg(err_desc->min_num, NULL, min, MSG_SIZE)<0)

         TEST_ERROR;

 

   fprintf (stream, “%*serror #%03d: %s in %s():

            line %u\n”,

            indent, “”, n, err_desc->file_name,

            err_desc->func_name, err_desc->line);





	
   fprintf (stream, “%*sclass: %s\n”, indent*2, “”, cls);

   fprintf (stream, “%*smajor: %s\n”, indent*2, “”, maj);

   fprintf (stream, “%*sminor: %s\n”, indent*2, “”, min);

 

   return 0;

 

error:

   return -1;

}








 

Programming Note for C++ Developers Using C Functions

If a C routine that takes a function pointer as an argument is called from within C++ code, the C routine should be returned from normally.

Examples of this kind of routine include callbacks such as H5Pset_elink_cb and H5Pset_type_con­v_cb and functions such as H5Tconvert and H5Ewalk2.

Exiting the routine in its normal fashion allows the HDF5 C Library to clean up its work properly. In other words, if the C++ application jumps out of the routine back to the C++ “catch” statement, the library is not given the opportunity to close any temporary data structures that were set up when the routine was called. The C++ application should save some state as the routine is started so that any problem that occurs might be diagnosed.

9.4. Advanced Error Handling Operations

The section above, see "Basic Error Handling Operations", discusses the basic error handling operations of the library. In that section, all the error records on the error stack are from the library itself. In this section, we are going to introduce the operations that allow an application program to push its own error records onto the error stack once it declares an error class of its own through the HDF5 Error API.

Example: An Error Report

An error report shows both the library’s error record and the application’s error records. See the example below.



Code Example 9-7. An error report

	
Error Test-DIAG: Error detected in Error Program (1.0)

         thread 8192:

   #000: ../../hdf5/test/error_test.c line 468 in main():

         Error test failed

      major: Error in test

      minor: Error in subroutine





	
   #001: ../../hdf5/test/error_test.c line 150 in

         test_error(): H5Dwrite failed as supposed to

      major: Error in IO

      minor: Error in H5Dwrite





	
HDF5-DIAG: Error detected in HDF5 (1.7.5) thread 8192:

   #002: ../../hdf5/src/H5Dio.c line 420 in H5Dwrite():

         not a dataset

      major: Invalid arguments to routine

      minor: Inappropriate type








 

In the line above error record #002 in the example above, the starting phrase is HDF5. This is the error class name of the HDF5 Library. All of the library’s error messages (major and minor) are in this default error class. The Error Test in the beginning of the line above error record #000 is the name of the application’s error class. The first two error records, #000 and #001, are from application’s error class.

By definition, an error class is a group of major and minor error messages for a library (the HDF5 Library or an application library built on top of the HDF5 Library) or an application program. The error class can be registered for a library or program through the HDF5 Error API. Major and minor messages can be defined in an error class. An application will have object handles for the error class and for major and minor mes­sages for further operation. See the example below.



Code Example 9-8. Defining an error class

	
#define MSG_SIZE       64

 

herr_t

custom_print_cb(unsigned n, const H5E_error2_t *err_desc,

void* client_data)

{





	
   FILE                        *stream  = (FILE *)client_data;

   char                        maj[MSG_SIZE];

   char                        min[MSG_SIZE];

   char                        cls[MSG_SIZE];

   const int                        indent = 4;

 





	
   /* Get descriptions for the major and minor error

   * numbers

   */

   if(H5Eget_class_name(err_desc->cls_id, cls, MSG_SIZE)<0)

      TEST_ERROR;

 

   if(H5Eget_msg(err_desc->maj_num, NULL, maj, MSG_SIZE)<0)

      TEST_ERROR;





	
 

   if(H5Eget_msg(err_desc->min_num, NULL, min, MSG_SIZE)<0)

      TEST_ERROR;

 

   fprintf (stream, “%*serror #%03d: %s in %s():

         line %u\n”,

         indent, “”, n, err_desc->file_name,

         err_desc->func_name, err_desc->line);





	
   fprintf (stream, “%*sclass: %s\n”, indent*2, “”, cls);

   fprintf (stream, “%*smajor: %s\n”, indent*2, “”, maj);

   fprintf (stream, “%*sminor: %s\n”, indent*2, “”, min);

 

   return 0;

 

error:

   return -1;

}








 

9.4.1. More Error API Functions

The Error API has functions that can be used to register or unregister an error class, to create or close error messages, and to query an error class or error message. These functions are illustrated below.

To register an error class:

hid_t H5Eregister_class(const char* cls_name, const char* lib_name,

            const char* version)

This function registers an error class with the HDF5 Library so that the application library or program can report errors together with the HDF5 Library.

To add an error message to an error class:

hid_t H5Ecreate_msg(hid_t class, H5E_type_t msg_type, const char* mesg)

This function adds an error message to an error class defined by an application library or program. The error message can be either major or minor which is indicated by parameter msg_type.

To get the name of an error class:

ssize_t H5Eget_class_name(hid_t class_id, char* name, size_t size)

This function retrieves the name of the error class specified by the class ID.

To retrieve an error message:

ssize_t H5Eget_msg(hid_t mesg_id, H5E_type_t* mesg_type, char* mesg,

            size_t size)

This function retrieves the error message including its length and type.

To close an error message:

herr_t H5Eclose_msg(hid_t mesg_id)

This function closes an error message.

To remove an error class:

herr_t H5Eunregister_class(hid_t class_id)

This function removes an error class from the Error API.

Example: Error Class and its Message

The example below shows how an application creates an error class and error messages.



Code Example 9-9. Create an error class and error messages

	
/* Create an error class */

class_id = H5Eregister_class(ERR_CLS_NAME, PROG_NAME,

PROG_VERS);

 

/* Retrieve class name */

H5Eget_class_name(class_id, cls_name, cls_size);

 





	
/* Create a major error message in the class */

maj_id = H5Ecreate_msg(class_id, H5E_MAJOR, “... ...”);

 

/* Create a minor error message in the class */

min_id = H5Ecreate_msg(class_id, H5E_MINOR, “... ...”);








 

The example below shows how an application closes error messages and unregisters the error class.



Code Example 9-10. Closing error messages and unregistering the error class

	
H5Eclose_msg(maj_id);

H5Eclose_msg(min_id);

H5Eunregister_class(class_id);








 

9.4.2. Pushing an Application Error Message onto Error Stack

An application can push error records onto or pop error records off of the error stack just as the library does internally. An error stack can be registered, and an object handle can be returned to the application so that the application can manipulate a registered error stack.

To register the current stack:

hid_t H5Eget_current_stack(void)

This function registers the current error stack, returns an object handle, and clears the current error stack. An empty error stack will also be assigned an ID.

To replace the current error stack with another:

herr_t H5Eset_current_stack(hid_t error_stack)

This function replaces the current error stack with another error stack specified by error_stack and clears the current error stack. The object handle error_stack is closed after this function call.

To push a new error record to the error stack:

herr_t H5Epush(hid_t error_stack, const char* file, const char* func,

            unsigned line, hid_t cls_id, hid_t major_id, hid_t minor_id,

            const char* desc, ... )

This function pushes a new error record onto the error stack for the current thread.

To delete some error messages:

herr_t H5Epop(hid_t error_stack, size_t count)

This function deletes some error messages from the error stack.

To retrieve the number of error records:

int H5Eget_num(hid_t error_stack)

This function retrieves the number of error records from an error stack.

To clear the error stack:

herr_t H5Eclear_stack(hid_t error_stack)

This function clears the error stack.

To close the object handle for an error stack:

herr_t H5Eclose_stack(hid_t error_stack)

This function closes the object handle for an error stack and releases its resources.

Example: Working with an Error Stack

The example below shows how an application pushes an error record onto the default error stack.



Code Example 9-11. Pushing an error message to an error stack

	
/* Make call to HDF5 I/O routine */

if((dset_id=H5Dopen(file_id, dset_name, access_plist))<0)

{

   /* Push client error onto error stack */





	
   H5Epush(H5E_DEFAULT,__FILE__,FUNC,__LINE__,cls_id,

      CLIENT_ERR_MAJ_IO,CLIENT_ERR_MINOR_OPEN,

      “H5Dopen failed”);

 

   /* Indicate error occurred in function */

   return(0);

}








 

The example below shows how an application registers the current error stack and creates an object han­dle to avoid another HDF5 function from clearing the error stack.



Code Example 9-12. Registering the error stack

	
if(H5Dwrite(dset_id, mem_type_id, mem_space_id,

      file_space_id, dset_xfer_plist_id, buf)<0)

{





	
   /* Push client error onto error stack */

   H5Epush(H5E_DEFAULT,__FILE__,FUNC,__LINE__,cls_id,

      CLIENT_ERR_MAJ_IO,CLIENT_ERR_MINOR_HDF5,

      “H5Dwrite failed”);

 





	
   /* Preserve the error stack by assigning an object

   * handle to it

   */

   error_stack = H5Eget_current_stack();

 

   /* Close dataset */

   H5Dclose(dset_id);

 





	
   /* Replace the current error stack with the

   * preserved one

   */

   H5Eset_current_stack(error_stack);

 

   Return(0);

}








 

 




10. Properties and Property Lists in HDF5

HDF5 properties and property lists make it possible to shape or modify an HDF5 file, group, dataset, attri­bute, committed datatype, or even an I/O stream, in a number of ways. For example, you can do any of the following:

•        Customize the storage layout of a file to suit a project or task.

•        Create a chunked dataset.

•        Apply compression or filters to raw data.

•        Use either ASCII or UTF-8 character encodings.

•        Create missing groups on the fly.

•        Switch between serial and parallel I/O.

•        Create consistency within a single file or across an international project.

Some properties enable an HDF5 application to take advantage of the capabilities of a specific computing environment while others make a file more compact; some speed the reading or writing of data while oth­ers enable more record-keeping at a per-object level. HDF5 offers nearly one hundred specific properties that can be used in literally thousands of combinations to maximize the usability of HDF5-stored data.

At the most basic level, a property list is a collection of properties, represented by name/value pairs that can be passed to various HDF5 functions, usually modifying default settings. A property list inherits a set of properties and values from a property list class. But that statement hardly provides a complete picture; in the rest of this section and in the next section, “Property List Classes, Property Lists, and Properties”, we will discuss these things in much more detail. After reading that material, the reader should have a reason­ably complete understanding of how properties and property lists can be used in HDF5 applications.



Figure 10-1. The HDF5 property environment

	
[image: PropListEcosystem.png]

 

 








 

The remaining sections in this chapter discuss the following topics:

•        What are properties, property lists, and property list classes?

•        Property list programming model

•        Generic property functions

•        Summary listings of property list functions

•        Additional resources

The discussions and function listings in this chapter focus on general property operations, object and link properties, and related functions.

File, group, dataset, datatype, and attribute properties are discussed in the chapters devoted to those fea­tures, where that information will be most convenient to users. For example, "HDF5 Datasets" discusses dataset creation property lists and functions, dataset access property lists and func­tions, and dataset transfer property lists and functions. This chapter does not duplicate those discussions.

Generic property operations are an advanced feature and are beyond the scope of this guide.

This chapter assumes an understanding of the following chapters of this HDF5 User’s Guide:

•        "The HDF5 Data Model and File Structure"

•        "The HDF5 Library and Programming Model"

10.1. Property List Classes, Property Lists, and Properties

HDF5 property lists and the property list interface H5P provide a mechanism for storing characteristics of objects in an HDF5 file and economically passing them around in an HDF5 application. In this capacity, property lists significantly reduce the burden of additional function parameters throughout the HDF5 API. Another advantage of property lists is that features can often be added to HDF5 by adding only property list functions to the API; this is particularly true when all other requirements of the feature can be accom­plished internally to the library.

For instance, a file creation operation needs to know several things about a file, such as the size of the userblock or the sizes of various file data structures. Bundling this information as a property list simplifies the interface by reducing the number of parameters to the function H5Fcreate.

As illustrated in the figure above ("The HDF5 property environment"), the HDF5 property environment is a three-level hierarchy:

•        Property list classes

•        Property lists

•        Properties

The following subsections discuss property list classes, property lists, and properties in more detail.

10.1.1. Property List Classes

A property list class defines the roles that property lists of that class can play. Each class includes all prop­erties that are valid for that class with each property set to its default value. HDF5 offers a property lists class for each of the following situations.



Table 10-1. Property list classes in HDF5

 	
Property List Class


 	
 


 	
For further discussion





	
File creation (FCPL)

File access (FAPL)

File mount (FMPL)


	
H5P_FILE_CREATE

H5P_FILE_ACCESS

H5P_FILE_MOUNT


	
See various sections of "The HDF5 File".

Used only as H5P_DEFAULT. For more information, see "File Mount Properties".





	
Object creation (OCPL)

Object copy (OCPYPL)


	
H5P_OBJECT_CREATE

H5P_OBJECT_COPY


	
See the table of "Object property functions (H5P)".





	
Group creation (GCPL)

Group access (GAPL)


	
H5P_GROUP_CREATE

H5P_GROUP_ACCESS


	
See "Programming Model for Groups".





	
Link creation (LCPL)

Link access (LAPL)


	
H5P_LINK_CREATE

H5P_LINK_ACCESS


	
See examples in "Programming Model for Properties and Property Lists" and the table of "Link creation property functions (H5P)".





	
Dataset creation (DCPL)

Dataset access (DAPL)

Dataset transfer (DXPL)


	
H5P_DATASET_CREATE

H5P_DATASET_ACCESS

H5P_DATASET_XFER


	
See "Programming Model for Datasets".





	
Datatype creation (TCPL)

Datatype access (TAPL)


	
H5P_DATATYPE_CREATE

H5P_DATATYPE_ACCESS


	
See various sections of "HDF5 Datatypes".





	
String creation (STRCPL)


	
H5P_STRING_CREATE


	
See "Programming Model for Datasets" and "Programming Model for Datatypes".





	
Attribute creation (ACPL)


	
H5P_ATTRIBUTE_CREATE


	
See "Working with Attributes".








Note: In the table above, the abbreviations to the right of each property list class name in this table are widely used in both HDF5 programmer documentation and HDF5 source code. For example, FCPL is file creation property list, OCPL is object creation property list, OCPYPL is object copy property list, and STRCPL is string creation property list. These abbreviations may appear in either uppercase or lowercase.

The “HDF5 property list class inheritance hierarchy” figure, immediately following, illustrates the inheri­tance hierarchy of HDF5’s property list classes. Properties are defined at the root of the HDF5 property environment (“Property List Class Root” in the figure below). Property list classes then inherit properties from that root, either directly or indirectly through a parent class. In every case, a property list class inher­its only the properties relevant to its role. For example, the object creation property list class (OCPL) inher­its all properties that are relevant to the creation of any object while the group creation property list class (GCPL) inherits only those properties that are relevant to group creation.



Figure 10-2. HDF5 property list class inheritance hierarchy

	
[image: PropListClassInheritance.png]

 

 








Note: In the figure above, property list classes displayed in black are directly accessible through the programming interface; the root of the property environment and the STRCPL and OCPL property list classes, in gray above, are not user-accessible. The red empty set symbol indicates that the file mount property list class (FMPL) is an empty class; that is, it has no settable properties. For more information, see "File Mount Properties". Abbreviations used in this figure are defined in the preceding table, “Property list classes in HDF5”.

10.1.2. Property Lists

A property list is a collection of related properties that are used together in specific circumstances. A new property list created from a property list class inherits the properties of the property list class and each property’s default value. A fresh dataset creation property list, for example, includes all of the HDF5 prop­erties relevant to the creation of a new dataset.

Property lists are implemented as containers holding a collection of name/value pairs. Each pair specifies a property name and a value for the property. A property list usually contains information for one to many properties.

HDF5’s default property values are designed to be reasonable for general use cases. Therefore, an applica­tion can often use a property list without modification. On the other hand, adjusting property list settings is a routine action and there are many reasons for an application to do so.

A new property list may either be derived from a property list class or copied from an existing property list. When a property list is created from a property list class, it contains all the properties that are relevant to the class, with each property set to its default value. A new property list created by copying an existing property list will contain the same properties and property values as the original property list. In either case, the property values can be changed as needed through the HDF5 API.

Property lists can be freely reused to create consistency. For example, a single set of file, group, and data­set creation property lists might be created at the beginning of a project and used to create hundreds, thousands, even millions, of consistent files, file structures, and datasets over the project’s life. When such consistency is important to a project, this is an economical means of providing it.

10.1.3. Properties

A property is the basic element of the property list hierarchy. HDF5 offers nearly one hundred properties controlling things ranging from file access rights, to the storage layout of a dataset, through optimizing the use of a parallel computing environment.

Further examples include the following:




 	
Purpose


 	
Examples


 	
Property List





	
Specify the driver to be used to open a file


	
A POSIX driver or an MPI IO driver


	
FAPL





	
Specify filters to be applied to a data­set


	
Gzip compression or checksum evalu­ation


	
DCPL





	
Specify whether to record key times associated with an object


	
Creation time and/or last-modified time


	
OCPL





	
Specify the access mode for a file opened via an external link


	
Read-only or read-write


	
LAPL








 

Each property is initialized with a default value. For each property, there are one or more dedicated H5Pset_* calls that can be used to change that value.

Creation, access, and transfer properties:

Properties fall into one of several major categories: creation properties, access properties, and transfer properties.

Creation properties control permanent object characteristics. These characteristics must be established when an object is created, cannot change through the life of the object (they are immutable), and the property setting usually has a permanent presence in the file.

Examples of creation properties include:

•        Whether a dataset is stored in a compact, contiguous, or chunked layout

The default for this dataset creation property (H5Pset_layout) is that a dataset is stored in a contiguous block. This works well for datasets with a known size limit that will fit easily in system memory.

A chunked layout is important if a dataset is to be compressed, to enable extending the dataset’s size, or to enable caching during I/O.

A compact layout is suitable only for very small datasets because the raw data is stored in the object header.

•        Creation of intermediate groups when adding an object to an HDF5 file

This link creation property (H5Pset_create_intermediate_group) enables an application to add an object in a file without having to know that the group or group hierarchy containing that object already exists. With this property set, HDF5 automatically creates missing groups. If this property is not set, an application must verify that each group in the path exists, and create those that do not, before creating the new object; if any group is missing, the create operation will fail.

•        Whether an HDF5 file is a single file or a set of tightly related files that form a virtual HDF5 file

Certain file creation properties enable the application to select one of several file layouts. Exam­ples of the available layouts include a standard POSIX-compliant layout (H5Pset_fapl_sec2), a family of files (H5Pset_fapl_family), and a split file layout that separates raw data and meta­data into separate files (H5Pset_fapl_split). These and other file layout options are discussed in "Alternate File Storage Layouts and Low-level File Drivers".

•        To enable error detection when creating a dataset

In settings where data integrity is vulnerable, it may be desirable to set checksumming when data­sets are created (H5Pset_fletcher32). A subsequent application will then have a means to ver­ify data integrity when reading the dataset.

Access properties control transient object characteristics. These characteristics may change with the cir­cumstances under which an object is accessed.

Examples of access properties include:

•        The driver used to open a file

For example, a file might be created with the MPI I/O driver (H5Pset_fapl_mpio) during high-speed data acquisition in a parallel computing environment. The same file might later be analyzed in a serial computing environment with I/O access handled through the serial POSIX driver (H5Pset_fapl_sec2).

•        Optimization settings in specialized environments

Optimizations differ across computing environments and according to the needs of the task being performed, so are transient by nature.

Transfer properties apply only to datasets and control transient aspects of data I/O. These characteristics may change with the circumstances under which data is accessed.

Examples of dataset transfer properties include:

•        To enable error detection when reading a dataset

If checksumming has been set on a dataset (with H5Pset_fletcher32, in the dataset creation property list), an application reading that dataset can choose whether check for data integrity (H5Pset_edc_check).

•        Various properties to optimize chunked data I/O on parallel computing systems

HDF5 provides several properties for tuning I/O of chunked datasets in a parallel computing envi­ronment (H5Pset_dxpl_mpio_chunk_opt, H5Pset_dxpl_mpio_chunk_opt_num, H5Pset_dxpl_mpio_chunk_opt_ratio, and H5Pget_mpio_actual_chunk_opt_mode).

Optimal settings differ due to the characteristics of a computing environment and due to an appli­cation’s data access patterns; even when working with the same file, these settings might change for every application and every platform.

10.2. Programming Model for Properties and Property Lists

The programming model for HDF5 property lists is actually quite simple:

1.      Create a property list.

2.      Modify the property list, if required.

3.      Use the property list.

4.      Close the property list.

There are nuances, of course, but that is the basic process.

In some cases, you will not have to define property lists at all. If the default property settings are sufficient for your application, you can tell HDF5 to use the default property list.

The following sections first discuss the use of default property lists, then each step of the programming model, and finally a few less frequently used property list operations.

10.2.1. Using Default Property Lists

Default property lists can simplify many routine HDF5 tasks because you do not always have to create every property list you use.

An application that would be well-served by HDF5’s default property settings can use the default property lists simply by substituting the value H5P_DEFAULT for a property list identifier. HDF5 will then apply the default property list for the appropriate property list class.

For example, the function H5Dcreate2 calls for a link creation property list, a dataset creation property list, and a dataset access property list. If the default properties are suitable for a dataset, this call can be made as

dset_id = H5Dcreate2( loc_id, name, dtype_id, space_id;

            H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT );

HDF5 will then apply the default link creation, dataset creation, and dataset access property lists correctly.

Of course, you would not want to do this without considering where it is appropriate, as there may be unforeseen consequences. Consider, for example, the use of chunked datasets. Optimal chunking is quite dependent on the makeup of the dataset and the most common access patterns, both of which must be taken into account in setting up the size and shape of chunks.

10.2.2. Basic Steps of the Programming Model

The steps of the property list programming model are described in the sub-sections below.

10.2.2.1. Create a Property List

A new property list can be created either as an instance of a property list class or by copying an existing property list. Consider the following examples. A new dataset creation property list is first created “from scratch” with H5Pcreate. A second dataset creation property list is then created by copying the first one with H5Pcopy.

dcplA_id = H5Pcreate (H5P_DATASET_CREATE);

The new dataset creation property list is created as an instance of the property list class H5P_­DATASET_CREATE.

The new dataset creation  property list’s identifier is returned in dcplA_id and the property list is initialized with default dataset creation property values.

A list of valid classes appears in the table "Property list classes in HDF5".

dcplB_id = H5Pcopy (dcplA_id);

A new dataset creation property list, dcplB_id, is created as a copy of dcplA_id and is initial­ized with dataset creation property values currently in dcplA_id.

At this point, dcplA_id and dcplB_id are identical; they will both contain any modified property values that were changed in dcplA_id before dcplB_id was created. They may, however, diverge as additional property values are reset in each.

While we are creating property lists, let’s create a link creation property list; we will need this property list when the new dataset is linked into the file below:

lcplAB_id = H5Pcreate (H5P_LINK_CREATE);

10.2.2.2. Change Property Values

This section describes how to set property values.

Later in this section, the dataset creation property lists dcplA_id and dcplB_id created in the section above will be used respectively to create chunked and contiguous datasets. To set this up, we must set the layout property in each property list. The following example sets dcplA_id for chunked datasets and dcplB_id for contiguous datasets:

error = H5Pset_layout (dcplA_id, H5D_CHUNKED);

error = H5Pset_layout (dcplB_id, H5D_CONTIGUOUS);

Since dcplA_id specifies a chunked layout, we must also set the number of dimensions and the size of the chunks. The example below specifies that datasets created with dcplA_id will be 3-dimensional and that the chunk size will be 100 in each dimension:

error = H5Pset_chunk (dcplA_id, 3, [100,100,100]);

These datasets will be created with UTF-8 encoded names. To accomplish that, the following example sets the character encoding property in the link creation property list to create link names with UTF-8 encod­ing:

error = H5Pset_char_encoding (lcplAB_id, H5T_CSET_UTF8);

dcplA_id can now be used to create chunked datasets and dcplB_id to create contiguous datasets. And with the use of lcplAB_id, they will be created with UTF-8 encoded names.

 

10.2.2.3. Use the Property List

Once the required property lists have been created, they can be used to control various HDF5 processes. For illustration, consider dataset creation.

Assume that the datatype dtypeAB and the dataspaces dspaceA and dspaceB have been defined and that the location identifier locAB_id specifies the group AB in the current HDF5 file. We have already cre­ated the required link creation and dataset creation property lists.  For the sake of illustration, we assume that the default dataset access property list meets our application requirements. The following calls would create the datasets dsetA and dsetB in the group AB. The raw data in dsetA will be contiguous while dsetB raw data will be chunked; both datasets will have UTF-8 encoded link names:

dsetA_id = H5Dcreate2( locAB_id, dsetA, dtypeAB, dspaceA_id,

            lcplAB_id, dcplA_id, H5P_DEFAULT );

dsetB_id = H5Dcreate2( locAB_id, dsetB, dtypeAB, dspaceB_id,

            lcplAB_id, dcplB_id, H5P_DEFAULT );

10.2.2.4. Close the Property List

Generally, creating or opening anything in an HDF5 file results in an HDF5 identifier. These identifiers are of HDF5 type hid_t and include things like file identifiers, often expressed as file_id; dataset identifi­ers, dset_id; and property list identifiers, plist_id. To reduce the risk of memory leaks, all of these identifiers must be closed once they are no longer needed.

Property list identifiers are no exception to this rule, and H5Pclose is used for this purpose. The calls immediately following would close the property lists created and used in the examples above.

error = H5Pclose (dcplA_id);

error = H5Pclose (dcplB_id);

error = H5Pclose (lcplAB_id);

10.2.3. Additional Property List Operations

A few property list operations fall outside of the programming model described above. This section describes those operations.

10.2.3.1. Query the Class of an Existing Property List

Occasionally an application will have a property list but not know the corresponding property list class. A call such as in the following example will retrieve the unknown class of a known property list:

PList_Class = H5Pget_class (dcplA_id);

Upon this function’s return, PList_Class will contain the value H5P_DATASET_CREATE indicating that dcplA_id is a dataset creation property list.

10.2.3.2. Determine Current Creation Property List Settings in an Existing Object

After a file has been created, another application may work on the file without knowing how the creation properties for the file were set up. Retrieving these property values is often unnecessary; HDF5 can read the data and knows how to deal with any properties it encounters.

But sometimes an application must do something that requires knowing the creation property settings. HDF5 makes the acquisition of this information fairly straight-forward; for each property setting call, H5Pset_*, there is a corresponding H5Pget_* call to retrieve the property’s current setting.

Consider the following examples which illustrate the determination of dataset layout and chunking set­tings:

The application must first identify the creation property list with the appropriate get creation property list call. There is one such call for each kind of object.

H5Dget_create_plist will return a property list identifier for the creation property list that was used to create the dataset. Call it DCPL1_id.

H5Pset_layout sets a dataset’s layout to be compact, contiguous, or chunked.

H5Pget_layout called with DCPL1_id will return the dataset’s layout, either H5D_­COMPACT, H5D_CONTIGUOUS, or H5D_CHUNKED.

H5Pset_chunk sets the rank of a dataset, that is the number of dimensions it will have, and the maximum size of each dimension.

H5Pget_chunk, also called with DCPL1_id, will return the rank of the dataset and the maximum size of each dimension.

If a creation property value has not been explicitly set, these H5Pget_ calls will return the property’s default value.

10.2.3.3. Determine Access Property Settings

Access property settings are quite different from creation properties. Since access property settings are not retained in an HDF5 file or object, there is normally no knowledge of the settings that were used in the past. On the other hand, since access properties do not affect characteristics of the file or object, this is not normally an issue. For more information, see "Access and Creation Property Exceptions."

One circumstance under which an application might need to determine access property settings might be when a file or object is already open but the application does not know the property list settings. In that case, the application can use the appropriate get access property list call to retrieve a property list identi­fier. For example, if the dataset dsetA from the earlier examples is still open, the following call would return an identifier for the dataset access property list in use:

dsetA_dacpl_id = H5Dget_access_plist( dsetA_id );

The application could then use the returned property list identifier to analyze the property settings.

10.3. Generic Properties Interface and User-defined Properties

HDF5’s generic property interface provides tools for managing the entire property hierarchy and for the creation and management of user-defined property lists and properties. This interface also makes it possi­ble for an application or a driver to create, modify, and manage custom properties, property lists, and property list classes. A comprehensive list of functions for this interface appears under “Generic Property Operations (Advanced)” in the “H5P: Property List Interface” section of the HDF5 Reference Manual.

Further discussion of HDF5’s generic property interface and user-defined properties and property lists is beyond the scope of this document.

10.4. Property List Function Summaries

General property functions, generic property functions and macros, property functions that are used with multiple types of objects, and object and link property functions are listed below.

Property list functions that apply to a specific type of object are listed in the chapter that discusses that object. For example, the Datasets chapter has two property list function listings: one for dataset creation property list functions and one for dataset access property list functions. As has been stated, this chapter is not intended to describe every property list function.



Function Listing 10-1. General property list functions (H5P)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Pcreate

h5pcreate_f


	
Creates a new property list as an instance of a specified parent property list class.





	
H5Pcopy

h5pcopy_f


	
Creates a new property list by copying the specified existing property list.





	
H5Pget_class

h5pget_class_f


	
Retrieves the parent property list class of the specified property list.





	
H5Pclose

h5pclose_f


	
Closes the specified property list.








 

Object property functions can be used with several kinds of objects.



Function Listing 10-2. Object property functions (H5P)

 	
C Function

Fortran Subroutine


 	
Purpose    





	
Object Creation Properties


	
 





	
H5Pget_attr_creation_order

h5pget_attr_creation_order_f


	
Retrieves tracking and indexing settings for attribute creation order.





	
H5Pget_attr_phase_change

h5pget_attr_phase_change_f


	
Retrieves attribute storage phase change thresholds.





	
H5Pget_obj_track_times

h5pget_obj_track_times_f


	
Determines whether times associated with an object are being recorded.





	
H5Pset_attr_creation_order

h5pset_attr_creation_order_f


	
Sets tracking and indexing of attribute creation order.





	
H5Pset_attr_phase_change

h5pset_attr_phase_change_f


	
Sets attribute storage phase change thresholds.





	
H5Pset_obj_track_times

h5pset_obj_track_times_f


	
Sets the recording of times associated with an object.





	
Object Copy Properties


	
 





	
H5Padd_merge_committed_dtype_path

(no Fortran subroutine)


	
Adds a path to the list of paths that will be searched in the destination file for a matching committed datatype.





	
H5Pfree_merge_committed_dtype_paths

(no Fortran subroutine)


	
Clears the list of paths stored in an object copy property list.





	
H5Pget_copy_object

h5pget_copy_object_f


	
Retrieves the properties to be used when an object is copied.





	
H5Pget_mcdt_search_cb

(no Fortran subroutine)


	
Retrieves the callback function from the specified object copy property list.





	
H5Pset_copy_object

h5pset_copy_object_f


	
Sets the properties to be used when an object is copied.





	
H5Pset_mcdt_search_cb

(no Fortran subroutine)


	
Sets the callback function that H5Ocopy will invoke before searching the entire destination file for a matching committed datatype.








 

The following table lists link creation properties. Since the creation of a link is almost always a step in the creation of an object, these properties may also be set in group creation property lists, dataset creation property lists, datatype creation property lists, and the more generic object creation property lists. Some are also applicable to the attribute creation property lists.



Function Listing 10-3. Link creation property functions (H5P)

 	
C Function

Fortran Subroutine


 	
Purpose





	
H5Pget_char_encoding

h5pget_char_encoding_f


	
Queries the character encoding used to encode link or attribute names.

Note: Use with link, object, dataset, datatype, group, or attribute creation property lists.





	
H5Pset_char_encoding

h5pset_char_encoding_f


	
Sets the character encoding used to encode link and attribute names.

Note: Use with link, object, dataset, datatype, group, or attribute creation property lists.





	
H5Pget_create_intermediate_group

h5pget_create_intermediate_group_f


	
Queries setting for creation of intermedi­ate groups.

Note: Use with link creation property lists, which in turn can be used in the create call for any dataset, datatype, or group.





	
H5Pset_create_intermediate_group

h5pset_create_intermediate_group_f


	
Specifies whether to create intermediate groups when they do not already exist.

Note: Use with link creation property lists, which in turn can be used in the create call for any dataset, datatype, or group.








Note: In the function listing above, the properties can be used with any of the indicated property lists.

10.5. Additional Property List Resources

Property lists are ubiquitous in an HDF5 environment and are therefore discussed in many places in HDF5 documentation. The following sections and listings in the HDF5 User’s Guide are of particular interest:

•        In the “HDF5 Data Model and File Structure” chapter, see "Property List".

•        In the “HDF5 File” chapter, see the following sections and listings:

•        "File Creation and File Access Properties"

•        "File Property Lists"

•        "Example with the File Creation Property List"

•        "Example with the File Access Property List"

•        "File creation property list functions (H5P)"

•        "File access property list functions (H5P)"

•        "File driver functions (H5P)"

•        In the “HDF5 Attributes” chapter, see "Attribute creation property list functions (H5P)".

•        In the “HDF5 Groups” chapter, see "Group creation property list functions (H5P)".

•        Property lists are discussed throughout "HDF5 Datasets".

All property list functions are described in the “H5P: Property List Interface” section of the HDF5 Reference Manual. The function index at the top of the page provides a categorized listing grouped by property list class. Those classes are listed below:

•        File creation properties

•        File access properties

•        Group creation properties

•        Dataset creation properties

•        Dataset access properties

•        Dataset transfer properties

•        Link creation properties

•        Link access properties

•        Object creation properties

•        Object copy properties

Additional categories not related to the class structure are as follows:

•        General property list operations

•        Generic property list functions

The general property functions can be used with any property list; the generic property functions constitute an advanced feature.

The in-memory file image feature of HDF5 uses property lists in a manner that differs substantially from their use elsewhere in HDF5. Those who plan to use in-memory file images must study “File Image Opera­tions” (PDF) in the Advanced Topics in HDF5 collection.

10.6. Notes

File Mount Properties

While the file mount property list class H5P_FILE_MOUNT is a valid HDF5 property list class, no file mount properties are defined by the HDF5 Library. References to a file mount property list should always be expressed as H5P_DEFAULT, meaning the default file mount property list.

Access and Creation Property Exceptions

There are a small number of exceptions to the rule that creation properties are always retained in a file or object and access properties are never retained.

The following properties are file access properties but they are not transient; they have permanent and different effects on a file. They could be validly classified as file creation properties as they must be set at creation time to properly create the file. But they are access properties because they must also be set when a file is reopened to properly access the file.




 	
Property


 	
Related function





	
Family file driver


	
H5Pset_fapl_family





	
Split file driver


	
H5Pset_fapl_split





	
Core file driver


	
H5Pset_fapl_core








 

The following is a link creation property, but it is not relevant after an object has been created and is not retained in the file or object.




 	
Property


 	
Related function





	
Create missing intermediate groups


	
H5Pset_create_intermediate_groups








 




11. Additional Resources

These documents provide additional information for the use and tuning of specific HDF5 features.



Table 11-1. Additional resources

 	
Document


 	
Comments





	
HDF5 Examples


	
Code examples by API.





	
Chunking in HDF5


	
Structuring the use of chunking and tun­ing it for performance.





	
Using the Direct Chunk Write Function


	
Describes another way that chunks can be written to datasets.





	
Copying Committed Datatypes with H5Ocopy


	
Describes how to copy to another file a dataset that uses a committed datatype or an object with an attribute that uses a committed datatype so that the commit­ted datatype in the destination file can be used by multiple objects.





	
Metadata Caching in HDF5


	
Managing the HDF5 metadata cache and tuning it for performance.





	
HDF5 Dynamically Loaded Filters


	
Describes how an HDF5 application can apply a filter that is not registered with the HDF5 Library.





	
HDF5 File Image Operations


	
Describes how to work with HDF5 files in memory. Disk I/O is not required when file images are opened, created, read from, or written to.





	
Modified Region Writes


	
Describes how to set write operations for in-memory files so that only modified regions are written to storage. Available when the Core (Memory) VFD is used.





	
Using Identifiers


	
Describes how identifiers behave and how they should be treated.





	
Using UTF-8 Encoding in HDF5 Applications


	
Describes the use of UTF-8 Unicode char­acter encodings in HDF5 applications.





	
Freeing Memory Allocated by the HDF5 Library


	
Describes how inconsistent memory man­agement can cause heap corruption or resource leaks and possible solutions.





	
HDF5 Glossary


	
A glossary of terms.








 


	Index

 
		
 abstract data model
 

	
	
	

	

	
		
 Access properties
 

	
	
	

	

	
		
 Array
 

	
	
	

	

	
		
 array datatypes
 

	
	
	

	

	
		
 atomic datatypes
 

	
	
	

	

	
		
 attr_id
 

	
	
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 backing_store
 

	
	
	

	

	
		
 big-endian
 

	
	
	

	

	
		
 block
 

	
	
	

	

	
		
 Chunked
 

	
	
	

	

	
		
 committed datatype
 

	
	
				The HDF5 Data Model and File Structure

			
				HDF5 Groups

			
	

	

	
		
 compact
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 complex_t
 

	
	
	

	

	
		
 compound datatype
 

	
	
	

	

	
		
 compound datatypes
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
	

	

	
		
 compression
 

	
	
	

	

	
		
 Contiguous
 

	
	
	

	

	
		
 count
 

	
	
	

	

	
		
 creation properties
 

	
	
	

	

	
		
 dangling link
 

	
	
	

	

	
		
 data pipeline
 

	
	
	

	

	
		
 data transfer pipeline
 

	
	
	

	

	
		
 dataset creation properties
 

	
	
	

	

	
		
 dataset storage layouts
 

	
	
	

	

	
		
 dataspace extent
 

	
	
	

	

	
		
 decompression
 

	
	
	

	

	
		
 Direct
 

	
	
	

	

	
		
 error record
 

	
	
	

	

	
		
 error stack
 

	
	
	

	

	
		
 external storage
 

	
	
	

	

	
		
 file access properties
 

	
	
	

	

	
		
 File access property lists
 

	
	
	

	

	
		
 file creation properties
 

	
	
	

	

	
		
 File creation property lists
 

	
	
	

	

	
		
 file storage layouts
 

	
	
	

	

	
		
 filters
 

	
	
	

	

	
		
 fractal arrays
 

	
	
	

	

	
		
 free
 

	
	
	

	

	
		
 H5_VERSION_GE
 

	
	
	

	

	
		
 H5_VERSION_LE
 

	
	
	

	

	
		
 H5A
 

	
	
	

	

	
		
 H5A_operator_t
 

	
	
	

	

	
		
 H5Aclose
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 h5aclose_f
 

	
	
	

	

	
		
 H5Acreate
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 H5Acreate_by_name
 

	
	
	

	

	
		
 h5acreate_by_name_f
 

	
	
	

	

	
		
 h5acreate_f
 

	
	
	

	

	
		
 H5Adelete
 

	
	
				HDF5 Datasets

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 H5Adelete_by_idx
 

	
	
	

	

	
		
 h5adelete_by_idx_f
 

	
	
	

	

	
		
 H5Adelete_by_name
 

	
	
	

	

	
		
 h5adelete_by_name_f
 

	
	
	

	

	
		
 h5adelete_f
 

	
	
	

	

	
		
 H5Aexists
 

	
	
	

	

	
		
 H5Aexists_by_name
 

	
	
	

	

	
		
 h5aexists_by_name_f
 

	
	
	

	

	
		
 h5aexists_f
 

	
	
	

	

	
		
 H5Aget_create_plist
 

	
	
	

	

	
		
 h5aget_create_plist_f
 

	
	
	

	

	
		
 H5Aget_info
 

	
	
	

	

	
		
 H5Aget_info_by_idx
 

	
	
	

	

	
		
 h5aget_info_by_idx_f
 

	
	
	

	

	
		
 H5Aget_info_by_name
 

	
	
	

	

	
		
 h5aget_info_by_name_f
 

	
	
	

	

	
		
 h5aget_info_f
 

	
	
	

	

	
		
 H5Aget_name
 

	
	
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 H5Aget_name_by_idx
 

	
	
	

	

	
		
 h5aget_name_by_idx_f
 

	
	
	

	

	
		
 h5aget_name_f
 

	
	
	

	

	
		
 H5Aget_space
 

	
	
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 h5aget_space_f
 

	
	
	

	

	
		
 H5Aget_storage_size
 

	
	
	

	

	
		
 h5aget_storage_size_f
 

	
	
	

	

	
		
 H5Aget_type
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 h5aget_type_f
 

	
	
	

	

	
		
 H5Aiterate
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 H5Aiterate_by_name
 

	
	
	

	

	
		
 H5Aopen
 

	
	
	

	

	
		
 H5Aopen_by_idx
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 h5aopen_by_idx_f
 

	
	
	

	

	
		
 H5Aopen_by_name
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 h5aopen_by_name_f
 

	
	
	

	

	
		
 h5aopen_f
 

	
	
	

	

	
		
 H5Aopen_idx
 

	
	
	

	

	
		
 H5Aopen_name
 

	
	
	

	

	
		
 H5Aread
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datatypes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 h5aread_f
 

	
	
	

	

	
		
 H5Arename
 

	
	
	

	

	
		
 H5Arename_by_name
 

	
	
	

	

	
		
 h5arename_by_name_f
 

	
	
	

	

	
		
 h5arename_f
 

	
	
	

	

	
		
 H5Awrite
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datatypes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 H5awrite_f
 

	
	
	

	

	
		
 H5check_version
 

	
	
	

	

	
		
 h5check_version_f
 

	
	
	

	

	
		
 H5close
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 File

			
				HDF5 Attributes

			
	

	

	
		
 h5close_f
 

	
	
	

	

	
		
 H5D
 

	
	
	

	

	
		
 H5D_CHUNKED
 

	
	
	

	

	
		
 H5D_COMPACT
 

	
	
	

	

	
		
 H5D_CONTIGUOUS
 

	
	
				HDF5 Datasets

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5D_UNLIMITED
 

	
	
	

	

	
		
 H5Dclose
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Error Handling

			
	

	

	
		
 h5dclose_f
 

	
	
	

	

	
		
 H5Dcreate
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5Dcreate_anon
 

	
	
	

	

	
		
 h5dcreate_anon_f
 

	
	
	

	

	
		
 h5dcreate_f
 

	
	
	

	

	
		
 H5Dcreate2
 

	
	
	

	

	
		
 H5detect
 

	
	
	

	

	
		
 H5Dextend
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
	

	

	
		
 H5Dfill
 

	
	
	

	

	
		
 h5dfill_f
 

	
	
	

	

	
		
 H5Dgather
 

	
	
	

	

	
		
 H5Dget_access_plist
 

	
	
	

	

	
		
 H5Dget_create_plist
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5dget_create_plist_f
 

	
	
	

	

	
		
 H5Dget_offset
 

	
	
	

	

	
		
 h5dget_offset_f
 

	
	
	

	

	
		
 H5Dget_space
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5dget_space_f
 

	
	
	

	

	
		
 H5Dget_space_status
 

	
	
	

	

	
		
 h5dget_space_status_f
 

	
	
	

	

	
		
 H5Dget_storage_size
 

	
	
	

	

	
		
 h5dget_storage_size_f
 

	
	
	

	

	
		
 H5Dget_type
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5dget_type_f
 

	
	
	

	

	
		
 H5Dget_vlen_buf_size
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
	

	

	
		
 H5Diterate
 

	
	
	

	

	
		
 H5dont_atexit
 

	
	
	

	

	
		
 h5dont_atexit_f
 

	
	
	

	

	
		
 H5Dopen
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Error Handling

			
	

	

	
		
 h5dopen_f
 

	
	
	

	

	
		
 H5Dread
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5dread_f
 

	
	
	

	

	
		
 H5Dscatter
 

	
	
	

	

	
		
 H5Dset_extent
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 h5dset_extent_f
 

	
	
	

	

	
		
 h5dump
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5Dvlen_get_buf_size
 

	
	
	

	

	
		
 h5dvlen_get_max_len_f
 

	
	
	

	

	
		
 H5Dvlen_reclaim
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5dvlen_reclaim_f
 

	
	
	

	

	
		
 H5Dwrite
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Error Handling

			
	

	

	
		
 h5dwrite_f
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
	

	

	
		
 H5E
 

	
	
	

	

	
		
 H5E_DEFAULT
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5E_error2_t
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5E_MAJOR
 

	
	
	

	

	
		
 H5E_MINOR
 

	
	
	

	

	
		
 H5E_WALK_DOWNWARD
 

	
	
	

	

	
		
 H5E_walk_t
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5E_WALK_UPWARD
 

	
	
	

	

	
		
 H5Eauto_is_v2
 

	
	
	

	

	
		
 H5Eclear
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 h5eclear_f
 

	
	
	

	

	
		
 H5Eclear_stack
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Eclose_msg
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Eclose_stack
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Ecreate_msg
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Eget_auto
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 h5eget_auto_f
 

	
	
	

	

	
		
 H5Eget_class_name
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Eget_current_stack
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Eget_msg
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Eget_num
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Epop
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Eprint
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 h5eprint_f
 

	
	
	

	

	
		
 H5Epush
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Eregister_class
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Eset_auto
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 h5eset_auto_f
 

	
	
	

	

	
		
 H5Eset_current_stack
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Eunregister_class
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Ewalk
 

	
	
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
				HDF5 Error Handling

			
	

	

	
		
 H5Ewalk2
 

	
	
	

	

	
		
 H5F
 

	
	
	

	

	
		
 H5F_ACC_EXCL
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 H5F_ACC_RDONLY
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 H5F_ACC_RDWR
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5F_ACC_TRUNC
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Attributes

			
	

	

	
		
 H5F_CLOSE_STRONG
 

	
	
	

	

	
		
 H5F_LIBVER_LATEST
 

	
	
				HDF5 Groups

			
				HDF5 Attributes

			
	

	

	
		
 H5F_UNLIMITED
 

	
	
	

	

	
		
 H5Fclear_elink_file_cache
 

	
	
				The HDF5 File

			
				HDF5 Groups

			
	

	

	
		
 H5Fclose
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Attributes

			
	

	

	
		
 h5fclose_f
 

	
	
	

	

	
		
 H5Fcreate
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5fcreate_f
 

	
	
	

	

	
		
 H5FD_CORE
 

	
	
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5FD_DIRECT
 

	
	
	

	

	
		
 H5FD_FAMILY
 

	
	
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5FD_LOG
 

	
	
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5FD_MPIO
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5FD_MPIPOSIX
 

	
	
	

	

	
		
 H5FD_MULTI
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5FD_SEC2
 

	
	
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5FD_SPLIT
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 H5FD_STDIO
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5FD_STREAM
 

	
	
	

	

	
		
 H5FD_WINDOWS
 

	
	
	

	

	
		
 H5Fflush
 

	
	
	

	

	
		
 h5fflush_f
 

	
	
	

	

	
		
 H5Fget_access_plist
 

	
	
	

	

	
		
 h5fget_access_plist_f
 

	
	
	

	

	
		
 H5Fget_create_plist
 

	
	
	

	

	
		
 h5fget_create_plist_f
 

	
	
	

	

	
		
 H5Fget_file_image
 

	
	
	

	

	
		
 h5fget_file_image_f
 

	
	
	

	

	
		
 H5Fget_filesize
 

	
	
	

	

	
		
 h5fget_filesize_f
 

	
	
	

	

	
		
 H5Fget_freespace
 

	
	
	

	

	
		
 h5fget_freespace_f
 

	
	
	

	

	
		
 H5Fget_info
 

	
	
	

	

	
		
 H5Fget_intent
 

	
	
	

	

	
		
 H5Fget_mdc_config
 

	
	
	

	

	
		
 H5Fget_mdc_hit_rate
 

	
	
	

	

	
		
 H5Fget_mdc_size
 

	
	
	

	

	
		
 H5Fget_mpi_atomicity
 

	
	
	

	

	
		
 h5fget_mpi_atomicity_f
 

	
	
	

	

	
		
 H5Fget_name
 

	
	
	

	

	
		
 h5fget_name_f
 

	
	
	

	

	
		
 H5Fget_obj_count
 

	
	
	

	

	
		
 h5fget_obj_count_f
 

	
	
	

	

	
		
 H5Fget_obj_ids
 

	
	
	

	

	
		
 h5fget_obj_ids_f
 

	
	
	

	

	
		
 H5Fget_vfd_handle
 

	
	
	

	

	
		
 H5FILE_NAME
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 H5Fis_hdf5
 

	
	
	

	

	
		
 h5fis_hdf5_f
 

	
	
	

	

	
		
 H5Fmount
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 h5fmount_f
 

	
	
	

	

	
		
 H5Fopen
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Error Handling

			
	

	

	
		
 h5fopen_f
 

	
	
	

	

	
		
 H5Freopen
 

	
	
	

	

	
		
 h5freopen_f
 

	
	
	

	

	
		
 H5Freset_mdc_hit_rate_stats
 

	
	
	

	

	
		
 H5Fset_mdc_config
 

	
	
	

	

	
		
 H5Fset_mpi_atomicity
 

	
	
	

	

	
		
 h5fset_mpi_atomicity_f
 

	
	
	

	

	
		
 H5Funmount
 

	
	
	

	

	
		
 h5funmount_f
 

	
	
	

	

	
		
 H5G
 

	
	
	

	

	
		
 H5garbage_collect
 

	
	
	

	

	
		
 h5garbage_collect_f
 

	
	
	

	

	
		
 H5Gclose
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Attributes

			
	

	

	
		
 h5gclose_f
 

	
	
	

	

	
		
 H5Gcreate
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Attributes

			
	

	

	
		
 H5Gcreate_anon
 

	
	
	

	

	
		
 h5gcreate_anon_f
 

	
	
	

	

	
		
 h5gcreate_f
 

	
	
	

	

	
		
 H5get_libversion
 

	
	
	

	

	
		
 h5get_libversion_f
 

	
	
	

	

	
		
 H5Gget_comment
 

	
	
	

	

	
		
 H5Gget_create_plist
 

	
	
	

	

	
		
 h5gget_create_plist_f
 

	
	
	

	

	
		
 H5Gget_info
 

	
	
	

	

	
		
 H5Gget_info_by_idx
 

	
	
	

	

	
		
 h5gget_info_by_idx_f
 

	
	
	

	

	
		
 H5Gget_info_by_name
 

	
	
	

	

	
		
 h5gget_info_by_name_f
 

	
	
	

	

	
		
 h5gget_info_f
 

	
	
	

	

	
		
 H5Gget_linkval
 

	
	
	

	

	
		
 H5Gget_num_objs
 

	
	
	

	

	
		
 h5gget_obj_info_idx_f
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 H5Gget_objinfo
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 H5Gget_objname_by_idx
 

	
	
	

	

	
		
 H5Gget_objtype_by_idx
 

	
	
	

	

	
		
 H5Giterate
 

	
	
	

	

	
		
 H5Glink
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 H5Glink2
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 H5Gmove
 

	
	
	

	

	
		
 H5Gmove2
 

	
	
	

	

	
		
 h5gn_members_f
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 H5Gopen
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 h5gopen_f
 

	
	
	

	

	
		
 H5Gset_comment
 

	
	
	

	

	
		
 H5Gunlink
 

	
	
				HDF5 Groups

			
				HDF5 Datatypes

			
	

	

	
		
 H5I
 

	
	
	

	

	
		
 H5L
 

	
	
	

	

	
		
 H5L_info_t
 

	
	
	

	

	
		
 H5Lcreate
 

	
	
	

	

	
		
 H5Lcreate_external
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 h5lcreate_external_f
 

	
	
	

	

	
		
 H5Lcreate_hard
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 h5lcreate_hard_f
 

	
	
	

	

	
		
 H5Lcreate_soft
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 h5lcreate_soft_f
 

	
	
	

	

	
		
 H5Lcreate_ud
 

	
	
	

	

	
		
 H5Ldelete
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
	

	

	
		
 h5ldelete_f
 

	
	
	

	

	
		
 H5Lget_info
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 h5lget_info_f
 

	
	
	

	

	
		
 H5Lget_name_by_idx
 

	
	
	

	

	
		
 h5lget_name_by_idx_f
 

	
	
	

	

	
		
 H5Lget_val
 

	
	
	

	

	
		
 H5Literate
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 H5Literate_by_name
 

	
	
	

	

	
		
 h5literate_by_name_f
 

	
	
	

	

	
		
 h5literate_f
 

	
	
	

	

	
		
 H5Lmove
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 h5lmove_f
 

	
	
	

	

	
		
 h5ls
 

	
	
	

	

	
		
 H5LTdtype_to_text
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5LTtext_to_dtype
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Lvisit
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 H5O
 

	
	
	

	

	
		
 H5O_info_t
 

	
	
	

	

	
		
 H5Oget_comment
 

	
	
	

	

	
		
 H5Oget_info
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 H5Oget_info_by_idx
 

	
	
	

	

	
		
 H5Oget_info_by_name
 

	
	
	

	

	
		
 h5oget_info_by_name_f
 

	
	
	

	

	
		
 H5open
 

	
	
	

	

	
		
 h5open_f
 

	
	
	

	

	
		
 H5Oset_comment
 

	
	
	

	

	
		
 H5Ovisit
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 h5ovisit_f
 

	
	
	

	

	
		
 H5P
 

	
	
	

	

	
		
 H5P_ATTRIBUTE_CREATE
 

	
	
	

	

	
		
 H5P_CRT_ORDER_TRACKED
 

	
	
	

	

	
		
 H5P_DATASET_ACCESS
 

	
	
	

	

	
		
 H5P_DATASET_CREATE
 

	
	
				The HDF5 Data Model and File Structure

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5P_DATASET_XFER
 

	
	
				The HDF5 Data Model and File Structure

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5P_DATASET_XFER_F
 

	
	
	

	

	
		
 H5P_DATATYPE_ACCESS
 

	
	
	

	

	
		
 H5P_DATATYPE_CREATE
 

	
	
	

	

	
		
 H5P_DEFAULT
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5P_FILE_ACCESS
 

	
	
				The HDF5 Data Model and File Structure

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5P_FILE_CREATE
 

	
	
				The HDF5 Data Model and File Structure

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5P_FILE_MOUNT
 

	
	
				The HDF5 Data Model and File Structure

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5P_GROUP_ACCESS
 

	
	
	

	

	
		
 H5P_GROUP_CREATE
 

	
	
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5P_LINK_ACCESS
 

	
	
	

	

	
		
 H5P_LINK_CREATE
 

	
	
	

	

	
		
 H5P_OBJECT_COPY
 

	
	
	

	

	
		
 H5P_OBJECT_CREATE
 

	
	
	

	

	
		
 H5P_STRING_CREATE
 

	
	
	

	

	
		
 H5Padd_merge_committed_dtype_path
 

	
	
	

	

	
		
 H5Pall_filters_avail
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 H5Pclose
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pclose_f
 

	
	
	

	

	
		
 H5Pcopy
 

	
	
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pcopy_f
 

	
	
	

	

	
		
 H5Pcreate
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pcreate_f
 

	
	
				HDF5 Datatypes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pdcpl.c
 

	
	
	

	

	
		
 H5Pfill_value_defined
 

	
	
	

	

	
		
 H5Pfree_merge_committed_dtype_paths
 

	
	
	

	

	
		
 H5Pget_alignment
 

	
	
	

	

	
		
 h5pget_alignment_f
 

	
	
	

	

	
		
 H5Pget_alloc_time
 

	
	
	

	

	
		
 h5pget_alloc_time_f
 

	
	
	

	

	
		
 H5Pget_attr_creation_order
 

	
	
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pget_attr_creation_order_f
 

	
	
				HDF5 Attributes

			
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pget_attr_phase_change
 

	
	
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pget_attr_phase_change_f
 

	
	
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pget_btree_ratios
 

	
	
	

	

	
		
 h5pget_btree_ratios_f
 

	
	
	

	

	
		
 H5Pget_buffer
 

	
	
	

	

	
		
 h5pget_buffer_f
 

	
	
	

	

	
		
 H5Pget_cache
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_cache_f
 

	
	
	

	

	
		
 H5Pget_char_encoding
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pget_char_encoding_f
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pget_chunk
 

	
	
				HDF5 Datasets

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pget_chunk_cache
 

	
	
	

	

	
		
 h5pget_chunk_cache_f
 

	
	
	

	

	
		
 h5pget_chunk_f
 

	
	
	

	

	
		
 H5Pget_class
 

	
	
	

	

	
		
 h5pget_class_f
 

	
	
	

	

	
		
 H5Pget_copy_object
 

	
	
	

	

	
		
 h5pget_copy_object_f
 

	
	
	

	

	
		
 H5Pget_create_intermediate_group
 

	
	
				HDF5 Groups

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pget_create_intermediate_group_f
 

	
	
	

	

	
		
 H5Pget_data_transform
 

	
	
	

	

	
		
 h5pget_data_transform_f
 

	
	
	

	

	
		
 H5Pget_driver
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_driver_f
 

	
	
	

	

	
		
 H5Pget_driver_info
 

	
	
	

	

	
		
 H5Pget_dxpl_mpio
 

	
	
	

	

	
		
 h5pget_dxpl_mpio_f
 

	
	
	

	

	
		
 H5Pget_edc_check
 

	
	
	

	

	
		
 h5pget_edc_check_f
 

	
	
	

	

	
		
 H5Pget_elink_file_cache_size
 

	
	
				The HDF5 File

			
				HDF5 Groups

			
	

	

	
		
 H5Pget_est_link_info
 

	
	
	

	

	
		
 h5pget_est_link_info_f
 

	
	
	

	

	
		
 H5Pget_external
 

	
	
	

	

	
		
 H5Pget_external_count
 

	
	
	

	

	
		
 h5pget_external_count_f
 

	
	
	

	

	
		
 h5pget_external_f
 

	
	
	

	

	
		
 H5Pget_family_offset
 

	
	
	

	

	
		
 H5Pget_fapl_core
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_fapl_core_f
 

	
	
	

	

	
		
 H5Pget_fapl_direct
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_fapl_direct_f
 

	
	
	

	

	
		
 H5Pget_fapl_family
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_fapl_family_f
 

	
	
	

	

	
		
 H5Pget_fapl_log
 

	
	
	

	

	
		
 H5Pget_fapl_mpio
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_fapl_mpio_f
 

	
	
	

	

	
		
 H5Pget_fapl_mpiposix
 

	
	
	

	

	
		
 h5pget_fapl_mpiposix_f
 

	
	
	

	

	
		
 H5Pget_fapl_multi
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_fapl_multi_f
 

	
	
	

	

	
		
 H5Pget_fclose_degree
 

	
	
	

	

	
		
 h5pget_fclose_degree_f
 

	
	
	

	

	
		
 H5Pget_file_image
 

	
	
	

	

	
		
 h5pget_file_image_f
 

	
	
	

	

	
		
 H5Pget_fill_time
 

	
	
	

	

	
		
 h5pget_fill_time_f
 

	
	
	

	

	
		
 H5Pget_fill_value
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5pget_fill_value_f
 

	
	
	

	

	
		
 H5Pget_filter
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 H5Pget_filter_by_id
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 h5pget_filter_by_id_f
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 h5pget_filter_f
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 H5Pget_gc_references
 

	
	
	

	

	
		
 h5pget_gc_references_f
 

	
	
	

	

	
		
 H5Pget_hyper_vector_size
 

	
	
	

	

	
		
 h5pget_hyper_vector_size_f
 

	
	
	

	

	
		
 H5Pget_istore_k
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_istore_k_f
 

	
	
	

	

	
		
 H5Pget_layout
 

	
	
				HDF5 Datasets

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pget_layout_f
 

	
	
	

	

	
		
 H5Pget_libver_bounds
 

	
	
	

	

	
		
 H5Pget_link_creation_order
 

	
	
	

	

	
		
 h5pget_link_creation_order_f
 

	
	
	

	

	
		
 H5Pget_link_phase_change
 

	
	
	

	

	
		
 h5pget_link_phase_change_f
 

	
	
	

	

	
		
 H5Pget_mcdt_search_cb
 

	
	
	

	

	
		
 H5Pget_mdc_config
 

	
	
	

	

	
		
 H5Pget_meta_block_size
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_meta_block_size_f
 

	
	
	

	

	
		
 H5Pget_mpio_actual_chunk_opt_mode
 

	
	
	

	

	
		
 H5Pget_multi_type
 

	
	
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5Pget_nfilters
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 h5pget_nfilters_f
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 H5Pget_nlinks
 

	
	
	

	

	
		
 h5pget_nlinks_f
 

	
	
	

	

	
		
 H5Pget_obj_track_times
 

	
	
	

	

	
		
 h5pget_obj_track_times_f
 

	
	
	

	

	
		
 H5Pget_shared_mesg_index
 

	
	
	

	

	
		
 H5Pget_shared_mesg_nindexes
 

	
	
	

	

	
		
 H5Pget_shared_mesg_phase_change
 

	
	
	

	

	
		
 H5Pget_sieve_buf_size
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_sieve_buf_size_f
 

	
	
	

	

	
		
 H5Pget_sizes
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_sizes_f
 

	
	
	

	

	
		
 H5Pget_small_data_block_size
 

	
	
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 h5pget_small_data_block_size_f
 

	
	
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5Pget_sym_k
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_sym_k_f
 

	
	
	

	

	
		
 H5Pget_type_conv_cb
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
	

	

	
		
 H5Pget_userblock
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_userblock_f
 

	
	
	

	

	
		
 H5Pget_version
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pget_version_f
 

	
	
	

	

	
		
 H5Pget_vlen_mem_manager
 

	
	
	

	

	
		
 H5Pmodify_filter
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 h5pmodify_filter_f
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 H5Premove_filter
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 h5premove_filter_f
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 H5Pset_alignment
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pset_alignment_f
 

	
	
	

	

	
		
 H5Pset_alloc_time
 

	
	
	

	

	
		
 h5pset_alloc_time_f
 

	
	
	

	

	
		
 H5Pset_attr_creation_order
 

	
	
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pset_attr_creation_order_f
 

	
	
	

	

	
		
 H5Pset_attr_phase_change
 

	
	
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pset_attr_phase_change_f
 

	
	
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pset_btree_ratios
 

	
	
	

	

	
		
 h5pset_btree_ratios_f
 

	
	
	

	

	
		
 H5Pset_buffer
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 h5pset_buffer_f
 

	
	
	

	

	
		
 H5Pset_cache
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 H5Pset_char_encoding
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pset_char_encoding_f
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Attributes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pset_chunk
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pset_chunk_cache
 

	
	
	

	

	
		
 h5pset_chunk_cache_f
 

	
	
	

	

	
		
 h5pset_chunk_f
 

	
	
	

	

	
		
 H5Pset_copy_object
 

	
	
	

	

	
		
 h5pset_copy_object_f
 

	
	
	

	

	
		
 h5pset_create_inter_group_f
 

	
	
	

	

	
		
 H5Pset_create_intermediate_group
 

	
	
				HDF5 Groups

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pset_create_intermediate_group_f
 

	
	
	

	

	
		
 H5Pset_create_intermediate_groups
 

	
	
	

	

	
		
 H5Pset_data_transform
 

	
	
	

	

	
		
 h5pset_data_transform_f
 

	
	
	

	

	
		
 H5Pset_deflate
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 h5pset_deflate_f
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 H5Pset_driver
 

	
	
	

	

	
		
 H5Pset_dxpl_mpio
 

	
	
	

	

	
		
 H5Pset_dxpl_mpio_chunk_opt
 

	
	
				HDF5 Datasets

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pset_dxpl_mpio_chunk_opt_num
 

	
	
				HDF5 Datasets

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pset_dxpl_mpio_chunk_opt_ratio
 

	
	
				HDF5 Datasets

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pset_dxpl_mpio_collective_opt
 

	
	
	

	

	
		
 h5pset_dxpl_mpio_f
 

	
	
	

	

	
		
 H5Pset_edc_check
 

	
	
				HDF5 Datasets

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pset_edc_check_f
 

	
	
	

	

	
		
 H5Pset_elink_cb
 

	
	
	

	

	
		
 H5Pset_elink_file_cache_size
 

	
	
				The HDF5 File

			
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 H5Pset_est_link_info
 

	
	
	

	

	
		
 h5pset_est_link_info_f
 

	
	
	

	

	
		
 H5Pset_external
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 h5pset_external_f
 

	
	
	

	

	
		
 H5Pset_family_offset
 

	
	
	

	

	
		
 h5pset_family_offset_f
 

	
	
	

	

	
		
 H5Pset_fapl_core
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pset_fapl_direct
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pset_fapl_direct_f
 

	
	
	

	

	
		
 H5Pset_fapl_family
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 H5Pset_fapl_log
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 H5Pset_fapl_mpi
 

	
	
	

	

	
		
 H5Pset_fapl_mpio
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pset_fapl_mpio_f
 

	
	
	

	

	
		
 H5Pset_fapl_mpiposix
 

	
	
	

	

	
		
 h5pset_fapl_mpiposix_f
 

	
	
	

	

	
		
 H5Pset_fapl_multi
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pset_fapl_multi_f
 

	
	
	

	

	
		
 H5Pset_fapl_sec2
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pset_fapl_sec2_f
 

	
	
	

	

	
		
 H5Pset_fapl_split
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pset_fapl_split_f
 

	
	
	

	

	
		
 H5Pset_fapl_stdio
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 H5Pset_fapl_stdio_f
 

	
	
	

	

	
		
 H5Pset_fapl_windows
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 H5Pset_fclose_degree
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 File

			
	

	

	
		
 h5pset_fclose_degree_f
 

	
	
	

	

	
		
 H5Pset_file_image
 

	
	
	

	

	
		
 h5pset_file_image_f
 

	
	
	

	

	
		
 H5Pset_fill_time
 

	
	
	

	

	
		
 h5pset_fill_time_f
 

	
	
	

	

	
		
 H5Pset_fill_value
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
	

	

	
		
 h5pset_fill_value_f
 

	
	
	

	

	
		
 H5Pset_filter
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 H5Pset_filter_callback
 

	
	
	

	

	
		
 h5pset_filter_f
 

	
	
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 H5Pset_fletcher32
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Datasets

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pset_fletcher32_f
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Datasets

			
	

	

	
		
 H5Pset_gc_references
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pset_gc_references_f
 

	
	
	

	

	
		
 H5Pset_hyper_vector_size
 

	
	
	

	

	
		
 h5pset_hyper_vector_size_f
 

	
	
	

	

	
		
 H5Pset_istore_k
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pset_istore_k_f
 

	
	
	

	

	
		
 H5Pset_layout
 

	
	
				HDF5 Datasets

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 h5pset_layout_f
 

	
	
	

	

	
		
 H5Pset_libver_bounds
 

	
	
				The HDF5 File

			
				HDF5 Groups

			
				HDF5 Groups

			
				HDF5 Attributes

			
	

	

	
		
 h5pset_libver_bounds_f
 

	
	
	

	

	
		
 H5Pset_link_creation_order
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 h5pset_link_creation_order_f
 

	
	
	

	

	
		
 H5Pset_link_phase_change
 

	
	
				HDF5 Groups

			
				HDF5 Groups

			
	

	

	
		
 h5pset_link_phase_change_f
 

	
	
	

	

	
		
 H5Pset_mcdt_search_cb
 

	
	
	

	

	
		
 H5Pset_mdc_config
 

	
	
	

	

	
		
 H5Pset_meta_block_size
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pset_meta_block_size_f
 

	
	
	

	

	
		
 H5Pset_multi_type
 

	
	
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5Pset_nbit
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 h5pset_nbit_f
 

	
	
	

	

	
		
 H5Pset_nlinks
 

	
	
	

	

	
		
 h5pset_nlinks_f
 

	
	
	

	

	
		
 H5Pset_obj_track_times
 

	
	
	

	

	
		
 h5pset_obj_track_times_f
 

	
	
	

	

	
		
 H5Pset_preserve
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5pset_preserve_f
 

	
	
	

	

	
		
 H5Pset_scaleoffset
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 h5pset_scaleoffset_f
 

	
	
	

	

	
		
 H5Pset_shared_mesg_index
 

	
	
	

	

	
		
 h5pset_shared_mesg_index_f
 

	
	
	

	

	
		
 H5Pset_shared_mesg_nindexes
 

	
	
	

	

	
		
 h5pset_shared_mesg_nindexes_f
 

	
	
	

	

	
		
 H5Pset_shared_mesg_phase_change
 

	
	
	

	

	
		
 H5Pset_shuffle
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 h5pset_shuffle_f
 

	
	
	

	

	
		
 H5Pset_sieve_buf_size
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pset_sieve_buf_size_f
 

	
	
	

	

	
		
 H5Pset_sizes
 

	
	
				The HDF5 File

			
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pset_sizes_f
 

	
	
	

	

	
		
 H5Pset_small_data_block_size
 

	
	
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 h5pset_small_data_block_size_f
 

	
	
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 H5Pset_sym_k
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pset_sym_k_f
 

	
	
	

	

	
		
 H5Pset_szip
 

	
	
	

	

	
		
 h5pset_szip_f
 

	
	
	

	

	
		
 H5Pset_type_conv_cb
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Error Handling

			
	

	

	
		
 H5Pset_userblock
 

	
	
				The HDF5 File

			
				The HDF5 File

			
	

	

	
		
 h5pset_userblock_f
 

	
	
	

	

	
		
 H5Pset_vlen_mem_manager
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
	

	

	
		
 H5Pvlen_mem_manager
 

	
	
	

	

	
		
 H5R
 

	
	
	

	

	
		
 H5R_DATASET_REGION
 

	
	
				HDF5 Datasets

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5R_dereference
 

	
	
	

	

	
		
 H5R_OBJECT
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Rcreate
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5Rdefrerence
 

	
	
	

	

	
		
 H5Rdereference
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5repack
 

	
	
	

	

	
		
 h5repart
 

	
	
	

	

	
		
 H5Rget_region
 

	
	
	

	

	
		
 H5Rget_select
 

	
	
	

	

	
		
 H5Rget_space
 

	
	
	

	

	
		
 H5S
 

	
	
	

	

	
		
 H5S_ALL
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
	

	

	
		
 H5S_MAX_RANK
 

	
	
	

	

	
		
 H5S_NULL
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5S_SCALAR
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5S_SELECT_ALL
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 H5S_SELECT_OR
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5S_SELECT_SET
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5S_SIMPLE
 

	
	
	

	

	
		
 H5S_UNLIMITED
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5Sclose
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sclose_f
 

	
	
	

	

	
		
 H5Scopy
 

	
	
	

	

	
		
 h5scopy_f
 

	
	
	

	

	
		
 H5Screate
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5screate_f
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5Screate_simple
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Attributes

			
	

	

	
		
 h5screate_simple_f
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5Sdecode
 

	
	
	

	

	
		
 h5sdecode_f
 

	
	
	

	

	
		
 H5Sencode
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5set_free_list_limits
 

	
	
	

	

	
		
 h5set_free_list_limits_f
 

	
	
	

	

	
		
 H5Sextent_copy
 

	
	
	

	

	
		
 h5sextent_copy_f
 

	
	
	

	

	
		
 H5Sextent_equal
 

	
	
	

	

	
		
 h5sextent_equal_f
 

	
	
	

	

	
		
 H5Sget_select_bounds
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sget_select_bounds_f
 

	
	
	

	

	
		
 H5Sget_select_elem_npoints
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sget_select_elem_npoints_f
 

	
	
	

	

	
		
 H5Sget_select_elem_pointlist
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sget_select_elem_pointlist_f
 

	
	
	

	

	
		
 H5Sget_select_hyper_blocklist
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sget_select_hyper_blocklist_f
 

	
	
	

	

	
		
 H5Sget_select_hyper_nblocks
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sget_select_hyper_nblocks_f
 

	
	
	

	

	
		
 H5Sget_select_npoints
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sget_select_npoints_f
 

	
	
	

	

	
		
 H5Sget_select_type
 

	
	
	

	

	
		
 h5sget_select_type_f
 

	
	
	

	

	
		
 H5Sget_simple_extent_dims
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sget_simple_extent_dims_f
 

	
	
	

	

	
		
 H5Sget_simple_extent_ndims
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sget_simple_extent_ndims_f
 

	
	
	

	

	
		
 H5Sget_simple_extent_npoints
 

	
	
	

	

	
		
 h5sget_simple_extent_npoints_f
 

	
	
	

	

	
		
 H5Sget_simple_extent_type
 

	
	
	

	

	
		
 h5sget_simple_extent_type_f
 

	
	
	

	

	
		
 H5Sis_simple
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sis_simple_f
 

	
	
	

	

	
		
 H5Soffset_simple
 

	
	
	

	

	
		
 h5soffset_simple_f
 

	
	
	

	

	
		
 H5Sselect_all
 

	
	
	

	

	
		
 h5sselect_all_f
 

	
	
	

	

	
		
 H5Sselect_elements
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sselect_elements_f
 

	
	
	

	

	
		
 H5Sselect_hyperslab
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sselect_hyperslab_f
 

	
	
	

	

	
		
 H5Sselect_none
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sselect_none_f
 

	
	
	

	

	
		
 H5Sselect_valid
 

	
	
	

	

	
		
 h5sselect_valid_f
 

	
	
	

	

	
		
 H5Sset_extent_none
 

	
	
	

	

	
		
 h5sset_extent_none_f
 

	
	
	

	

	
		
 H5Sset_extent_simple
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 h5sset_extent_simple_f
 

	
	
	

	

	
		
 H5T
 

	
	
	

	

	
		
 H5T_ARRAY
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_BITFIELD
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_C_S1
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_COMPOUND
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_COMPOUND_F
 

	
	
	

	

	
		
 H5T_CRAY_F64
 

	
	
	

	

	
		
 H5T_CSET_ASCII
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_CSET_UTF8
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_DIR_DEFAULT
 

	
	
	

	

	
		
 H5T_ENUM
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_FLOAT
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_IEEE_F32BE
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_IEEE_F32LE
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_IEEE_F64LE
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_INTEGER
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_INTEL_B64
 

	
	
	

	

	
		
 H5T_NATIVE_CHAR
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_NATIVE_DOUBLE
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_NATIVE_FLOAT
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 H5T_NATIVE_INT
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Groups

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_NATVE_INT
 

	
	
	

	

	
		
 H5T_NORM_IMPLIED
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_NORM_MSBSET
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_NORM_NONE
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_OPAQUE
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_ORDER_BE
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_ORDER_LE
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_PAD_NONE
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_PAD_ONE
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_PAD_ZERO
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_REFERENCE
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_REGION_OBJ
 

	
	
	

	

	
		
 H5T_SDT_I32LE
 

	
	
	

	

	
		
 H5T_SELECT_OR
 

	
	
	

	

	
		
 H5T_SELECT_SET
 

	
	
	

	

	
		
 H5T_SGN_2
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_SGN_NONE
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_STD_BE32
 

	
	
	

	

	
		
 H5T_STD_I32BE
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_STD_I32LE
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_STD_I8LE
 

	
	
	

	

	
		
 H5T_STD_REF_DSETREG
 

	
	
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 H5T_STD_REF_OBJ
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_STD_ROBJ
 

	
	
	

	

	
		
 H5T_STD_U16BE
 

	
	
	

	

	
		
 H5T_STR_NULLPAD
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_STR_NULLTERM
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_STR_SPACEPAD
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_STRING
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_VARIABLE
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5T_VLEN
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Tarray_create
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tarray_create_f
 

	
	
	

	

	
		
 H5Tclose
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Error Handling

			
	

	

	
		
 h5tclose_f
 

	
	
	

	

	
		
 H5Tcommit
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Tcommit_anon
 

	
	
	

	

	
		
 h5tcommit_anon_f
 

	
	
	

	

	
		
 h5tcommit_f
 

	
	
	

	

	
		
 H5Tcommitted
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tcommitted_f
 

	
	
	

	

	
		
 H5Tcompiler_conv
 

	
	
	

	

	
		
 h5tcompiler_conv_f
 

	
	
	

	

	
		
 H5Tconvert
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Error Handling

			
	

	

	
		
 h5tconvert_f
 

	
	
	

	

	
		
 H5Tcopy
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tcopy_f
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Tcreate
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tcreate_f
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Tdecode
 

	
	
	

	

	
		
 h5tdecode_f
 

	
	
	

	

	
		
 H5Tdetect_class
 

	
	
	

	

	
		
 H5Tencode
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Tenum_create
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tenum_create_f
 

	
	
	

	

	
		
 H5Tenum_insert
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tenum_insert_f
 

	
	
	

	

	
		
 H5Tenum_nameof
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tenum_nameof_f
 

	
	
	

	

	
		
 H5Tenum_valueof
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tenum_valueof_f
 

	
	
	

	

	
		
 H5Tequal
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tequal_f
 

	
	
	

	

	
		
 H5Tfind
 

	
	
	

	

	
		
 H5Tget_array_dims
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_array_dims_f
 

	
	
	

	

	
		
 H5Tget_array_ndims
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_array_ndims_f
 

	
	
	

	

	
		
 H5Tget_class
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_class_f
 

	
	
	

	

	
		
 H5Tget_create_plist
 

	
	
	

	

	
		
 h5tget_create_plist_f
 

	
	
	

	

	
		
 H5Tget_cset
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_cset_f
 

	
	
	

	

	
		
 H5Tget_ebias
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_ebias_f
 

	
	
	

	

	
		
 H5Tget_fields
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_fields_f
 

	
	
	

	

	
		
 H5Tget_inpad
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_inpad_f
 

	
	
	

	

	
		
 H5Tget_member_class
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_member_class_f
 

	
	
	

	

	
		
 H5Tget_member_index
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_member_index_f
 

	
	
	

	

	
		
 H5Tget_member_name
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_member_name_f
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Tget_member_offset
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_member_offset_f
 

	
	
	

	

	
		
 H5Tget_member_type
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_member_type_f
 

	
	
	

	

	
		
 H5Tget_member_value
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_member_value_f
 

	
	
	

	

	
		
 H5Tget_native_type
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_native_type_f
 

	
	
	

	

	
		
 H5Tget_nmembers
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_nmembers_f
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Tget_norm
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_norm_f
 

	
	
	

	

	
		
 H5Tget_offset
 

	
	
	

	

	
		
 h5tget_offset_f
 

	
	
	

	

	
		
 H5Tget_order
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_order_f
 

	
	
	

	

	
		
 H5Tget_pad
 

	
	
	

	

	
		
 h5tget_pad_f
 

	
	
	

	

	
		
 H5Tget_precision
 

	
	
	

	

	
		
 h5tget_precision_f
 

	
	
	

	

	
		
 H5Tget_sign
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_sign_f
 

	
	
	

	

	
		
 H5Tget_size
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_size_f
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Tget_strpad
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_strpad_f
 

	
	
	

	

	
		
 H5Tget_super
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_super_f
 

	
	
	

	

	
		
 H5Tget_tag
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tget_tag_f
 

	
	
	

	

	
		
 H5Tget_type
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Tinsert
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tinsert_f
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Tis_variable_str
 

	
	
	

	

	
		
 h5tis_variable_str_f
 

	
	
	

	

	
		
 H5Tlock
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Topen
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5topen_f
 

	
	
	

	

	
		
 H5Tpack
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tpack_f
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 H5Tregister
 

	
	
	

	

	
		
 H5Tset_cset
 

	
	
	

	

	
		
 h5tset_cset_f
 

	
	
	

	

	
		
 H5Tset_ebias
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tset_ebias_f
 

	
	
	

	

	
		
 H5Tset_fields
 

	
	
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tset_fields_f
 

	
	
	

	

	
		
 H5Tset_inpad
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tset_inpad_f
 

	
	
	

	

	
		
 H5Tset_norm
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tset_norm_f
 

	
	
	

	

	
		
 H5Tset_offset
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tset_offset_f
 

	
	
	

	

	
		
 H5Tset_order
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tset_order_f
 

	
	
	

	

	
		
 H5Tset_pad
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tset_pad_f
 

	
	
	

	

	
		
 H5Tset_precision
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tset_precision_f
 

	
	
	

	

	
		
 H5Tset_sign
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tset_sign_f
 

	
	
	

	

	
		
 H5Tset_size
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datasets

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tset_size_f
 

	
	
	

	

	
		
 H5Tset_strpad
 

	
	
	

	

	
		
 h5tset_strpad_f
 

	
	
	

	

	
		
 H5Tset_tag
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tset_tag_f
 

	
	
	

	

	
		
 H5Tunregister
 

	
	
	

	

	
		
 H5Tvlen_create
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 h5tvlen_create_f
 

	
	
	

	

	
		
 H5Z
 

	
	
	

	

	
		
 H5Z_can_apply_nbit
 

	
	
	

	

	
		
 H5Z_filter_nbit
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 H5Z_set_local_nbit
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 H5Z_set_parms_array
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 H5Z_set_parms_atomic
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 H5Z_set_parms_compound
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 H5Z_set_parms_noopdatatype
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 H5Z_set_parms_nooptype
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 H5Zregister
 

	
	
	

	

	
		
 H5Zscaleoffset.c
 

	
	
	

	

	
		
 hard link
 

	
	
	

	

	
		
 hdset_reg_ref_t
 

	
	
	

	

	
		
 HOFFSET
 

	
	
				The HDF5 Library and Programming Model

			
				HDF5 Datatypes

			
	

	

	
		
 hvl_t
 

	
	
	

	

	
		
 hyperslab
 

	
	
				The HDF5 Library and Programming Model

			
				The HDF5 Library and Programming Model

			
				HDF5 Dataspaces and Partial I/O

			
	

	

	
		
 immutable
 

	
	
				HDF5 Datatypes

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 immutable transient
 

	
	
	

	

	
		
 indexed
 

	
	
	

	

	
		
 library
 

	
	
	

	

	
		
 link
 

	
	
	

	

	
		
 link objects
 

	
	
	

	

	
		
 little-endian
 

	
	
	

	

	
		
 loc_id
 

	
	
				HDF5 Attributes

			
				HDF5 Attributes

			
				HDF5 Attributes

			
	

	

	
		
 low version bound
 

	
	
	

	

	
		
 low-level file drivers
 

	
	
	

	

	
		
 major message
 

	
	
	

	

	
		
 maxdims
 

	
	
	

	

	
		
 mem_type_id
 

	
	
	

	

	
		
 minor message
 

	
	
	

	

	
		
 MPI_COMM_WORLD
 

	
	
	

	

	
		
 n-bit compression
 

	
	
	

	

	
		
 n-bit datatype
 

	
	
	

	

	
		
 n-bit decompression
 

	
	
	

	

	
		
 n-bit filter
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 named datatype
 

	
	
				The HDF5 Data Model and File Structure

			
				HDF5 Groups

			
	

	

	
		
 named object
 

	
	
				The HDF5 Data Model and File Structure

			
				HDF5 Groups

			
	

	

	
		
 NATIVE
 

	
	
	

	

	
		
 no-op datatypes
 

	
	
	

	

	
		
 null dataspace
 

	
	
	

	

	
		
 object identifier
 

	
	
				The HDF5 Data Model and File Structure

			
				HDF5 Groups

			
	

	

	
		
 object_id
 

	
	
	

	

	
		
 object_info
 

	
	
	

	

	
		
 offset
 

	
	
	

	

	
		
 padding bits
 

	
	
	

	

	
		
 permanent
 

	
	
	

	

	
		
 pipeline
 

	
	
	

	

	
		
 polygon lists
 

	
	
	

	

	
		
 POSIX
 

	
	
	

	

	
		
 post-compression
 

	
	
	

	

	
		
 pre-compression
 

	
	
	

	

	
		
 primary data object
 

	
	
	

	

	
		
 programming model
 

	
	
	

	

	
		
 property
 

	
	
	

	

	
		
 property list
 

	
	
	

	

	
		
 property list class
 

	
	
	

	

	
		
 ragged arrays
 

	
	
	

	

	
		
 raw data
 

	
	
	

	

	
		
 region reference
 

	
	
	

	

	
		
 repartition
 

	
	
	

	

	
		
 scalar dataspace
 

	
	
	

	

	
		
 scale_factor
 

	
	
	

	

	
		
 scale-offset compression
 

	
	
	

	

	
		
 scale-offset filter
 

	
	
	

	

	
		
 simple dataspace
 

	
	
	

	

	
		
 soft links
 

	
	
	

	

	
		
 storage layout
 

	
	
	

	

	
		
 storage model
 

	
	
	

	

	
		
 stored data
 

	
	
	

	

	
		
 stride
 

	
	
	

	

	
		
 superblock
 

	
	
	

	

	
		
 Transfer properties
 

	
	
	

	

	
		
 transient
 

	
	
				HDF5 Datatypes

			
				Properties and Property Lists in HDF5

			
				Properties and Property Lists in HDF5

			
	

	

	
		
 userblock
 

	
	
	

	

	
		
 Variable-length
 

	
	
	

	

	
		
 vector
 

	
	
	

	

	
		
 VFL
 

	
	
	

	

	
		
 virtual file layer
 

	
	
				The HDF5 Data Model and File Structure

			
				The HDF5 File

			
				HDF5 Datasets

			
	

	

	
		
 vl_info_t
 

	
	
				HDF5 Datasets

			
				HDF5 Datasets

			
	

	

	
		
 vl_t
 

	
	
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
				HDF5 Datatypes

			
	

	

	
		
 zlib
 

	
	
	

	

	


 Glossary

 
	attribute
 

	An HDF5 attribute is a small metadata object describing the nature and/or intended usage of a primary data object. A primary data object may be a dataset, group, or committed datatype.
 

	
	Chunked
 

	Chunked
 

	
	Chunked Storage
 

	Chunked Storage
 

	
	committed datatype
 

	A datatype can be shared by more than one dataset in the file if the datatype is saved to the file with a name. This shareable datatype is known as a committed datatype. In the past, this kind of datatype was called a named datatype.
 

	
	Compact
 

	Compact
 

	
	composite datatype
 

	In addition to atomic datatypes, the HDF5 Library supports composite datatypes. A composite datatype is an aggregation of one or more datatypes. Each class of composite datatypes has properties that describe the organization of the composite datatype. See the figure below. Composite datatypes include:
 

	
	compound
 

	To create and use a compound datatype, you need to create a datatype with class compound (H5T_COM­POUND) and specify the total size of the data element in bytes. A compound datatype consists of zero or more uniquely named members. Members can be defined in any order but must occupy non-overlapping regions within the datum. The table below lists the properties of compound datatype members.
 

	
	compound datatype
 

	A compound datatype is a collection of one or more data elements. Each element might be an atomic type, a small array, or another compound datatype.
 

	
	Contiguous
 

	Contiguous
 

	
	Contiguous Storage
 

	Contiguous Storage
 

	
	dangling link
 

	Note that an object’s existence in a file is governed by the presence of at least one hard link to that object. If the last hard link to an object is removed, the object is removed from the file and any remaining soft link becomes a dangling link, a link whose target object does not exist.
 

	
	Data Pipeline
 

	The Data Pipeline
 

	
	Data Pipeline Filters
 

	Data Pipeline Filters
 

	
	Data Transfer Properties
 

	Data Transfer Properties
 

	
	dataset header
 

	A dataset header consists of one or more header messages containing persistent metadata describing var­ious aspects of the dataset. These records are defined in the HDF5 File Format Specification. The amount of storage required for the metadata depends on the metadata to be stored. The table below summarizes the metadata.
 

	
	dataset name
 

	A dataset name is a sequence of alphanumeric ASCII characters. The full name would include a tracing of the group hierarchy from the root group of the file. An example is /rootGroup/groupA/subgroup23/dataset1. The local name or relative name within the lowest-level group containing the dataset would include none of the group hierarchy. An example is Dataset1.
 

	
	Dataspace
 

	Dataspace
 

	
	dataspace extent
 

	A simple dataspace, H5S_SIMPLE, is a multidimensional array of elements. The dimensionality of the dataspace (or the rank of the array) is fixed and is defined at creation time. The size of each dimension can grow during the life time of the dataspace from the current size up to the maximum size. Both the current size and the maximum size are specified at creation time. The sizes of dimensions at any particular time in the life of a dataspace are called the current dimensions, or the dataspace extent. They can be queried along with the maximum sizes.
 

	
	dataspace selection
 

	The data transfer will transfer some or all of the elements of the dataset depending on the dataspace selection. The selection has two dataspace objects: one for the source, and one for the destination. These objects describe which elements of the dataspace to be transferred. Some (partial I/O) or all of the data may be transferred. Partial I/O is defined by defining hyperslabs or lists of elements in a dataspace object.
 

	
	Datatype
 

	Datatype
 

	
	Early allocation
 

	The table below shows the options for when data is allocated in the file. Early allocation is done during the dataset create call. Certain file drivers (especially MPI-I/O and MPI-POSIX) require space to be allocated when a dataset is created, so all processors will have the correct view of the data.
 

	
	error description
 

	In the example above, we can see that an error record has a major message and a minor message. A major message generally indicates where the error happens. The location can be a dataset or a dataspace, for example. A minor message explains further details of the error. An example is “unable to open file”. Another specific detail about the error can be found at the end of the first line of each error record. This error description is usually added by the library designer to tell what exactly goes wrong. In the example above, the “predefined datatype” is an error description.
 

	
	error record
 

	In the example above, we can see that an error record has a major message and a minor message. A major message generally indicates where the error happens. The location can be a dataset or a dataspace, for example. A minor message explains further details of the error. An example is “unable to open file”. Another specific detail about the error can be found at the end of the first line of each error record. This error description is usually added by the library designer to tell what exactly goes wrong. In the example above, the “predefined datatype” is an error description.
 

	
	error stack
 

	Let us first try to understand the error stack. An error stack is a collection of error records.   Error records can be pushed onto or popped off the error stack. By default, when an error occurs deep within the HDF5 Library, an error record is pushed onto an error stack and that function returns a failure indication. Its caller detects the failure, pushes another record onto the stack, and returns a failure indication. This con­tinues until the API function called by the application returns a failure indication. The next API function being called will reset the error stack. All HDF5 Library error records belong to the same error class. For more information, see "Advanced Error Handling Operations" on page 329.
 

	
	Filters
 

	Filters
 

	
	hard links
 

	There are two kinds of links, hard links and symbolic links. Hard links are reference counted; symbolic links are not. When an object is created, a hard link is automatically created. An object can be deleted from the file by removing all the hard links to it.
 

	
	hyperslab
 

	The more general case of a hyperslab can also be a regular pattern of points or blocks within the dataspace. Four parameters are required to describe a general hyperslab: the starting coordinates, the block size, the stride or space between blocks, and the number of blocks. These parameters are each expressed as a one-dimensional array with length equal to the rank of the dataspace and are described in the table below.
 

	
	Incremental allocation
 

	Incremental allocation (chunks only) is done at the time of the first write to the chunk. Chunks that have never been written are not allocated in the file. In a sparsely populated dataset, this option allocates chunks only where data is actually written.
 

	
	Late allocation
 

	Late allocation is done at the time of the first write to dataset. Space for the whole dataset is allocated at the first write.
 

	
	link
 

	A link is, in effect, a path by which the target object can be accessed; it therefore has a name which func­tions as a single path component. A link can be removed with an H5Ldelete call, effectively removing the target object from the group that contained the link (assuming, of course, that the removed link was the only link to the target object in the group).
 

	
	major message
 

	In the example above, we can see that an error record has a major message and a minor message. A major message generally indicates where the error happens. The location can be a dataset or a dataspace, for example. A minor message explains further details of the error. An example is “unable to open file”. Another specific detail about the error can be found at the end of the first line of each error record. This error description is usually added by the library designer to tell what exactly goes wrong. In the example above, the “predefined datatype” is an error description.
 

	
	Memory Datatype
 

	Memory Datatype
 

	
	Memory Space
 

	Memory Space
 

	
	minor message
 

	In the example above, we can see that an error record has a major message and a minor message. A major message generally indicates where the error happens. The location can be a dataset or a dataspace, for example. A minor message explains further details of the error. An example is “unable to open file”. Another specific detail about the error can be found at the end of the first line of each error record. This error description is usually added by the library designer to tell what exactly goes wrong. In the example above, the “predefined datatype” is an error description.
 

	
	N-bit Datatype
 

	N-bit Datatype
 

	
	N-bit Filter
 

	N-bit Filter
 

	
	Name
 

	Name
 

	
	named datatype
 

	A datatype can be shared by more than one dataset in the file if the datatype is saved to the file with a name. This shareable datatype is known as a committed datatype. In the past, this kind of datatype was called a named datatype.
 

	
	no-op datatypes
 

	At present, the n-bit filter supports all datatypes. For datatypes of class time, string, opaque, reference, ENUM, and variable-length, the n-bit filter acts as a no-op which is short for no operation. For conve­nience, the rest of this section refers to such datatypes as no-op datatypes.
 

	
	null dataspace
 

	A null dataspace, H5S_NULL, contains no data elements. Note that no selections can be applied to a null dataset as there is nothing to select.
 

	
	primary data object
 

	An HDF5 attribute is a small metadata object describing the nature and/or intended usage of a primary data object. A primary data object may be a dataset, group, or committed datatype.
 

	
	releasing the object’s identifier
 

	An application should close an object such as a datatype, dataspace, or dataset once the object is no lon­ger needed. Since each is an independent object, each must be released (or closed) separately. This action is frequently referred to as releasing the object’s identifier. The code in the example below closes the datatype, dataspace, and dataset that were created in the preceding section.
 

	
	scalar dataspace
 

	A scalar dataspace, H5S_SCALAR, represents just one element, a scalar. Note that the datatype of this one element may be very complex; example would be a compound structure with members being of any allowed HDF5 datatype, including multidimensional arrays, strings, and nested compound structures. By convention, the rank of a scalar dataspace is always 0 (zero); think of it geometrically as a single, dimen­sionless point, though that point may be complex.
 

	
	selections
 

	The previous section described writing or reading an entire dataset. HDF5 also supports access to portions of a dataset. These parts of datasets are known as selections.
 

	
	self-describing
 

	The structure of an HDF5 file is self-describing, meaning that an application can navigate an HDF5 file to discover and understand all the objects it contains. This is an iterative process wherein the structure is tra­versed as a graph, starting at one node and recursively visiting linked nodes. To explore the entire file, the traversal should start at the root group.
 

	
	simple dataspace
 

	A simple dataspace, H5S_SIMPLE, is a multidimensional array of elements. The dimensionality of the dataspace (or the rank of the array) is fixed and is defined at creation time. The size of each dimension can grow during the life time of the dataspace from the current size up to the maximum size. Both the current size and the maximum size are specified at creation time. The sizes of dimensions at any particular time in the life of a dataspace are called the current dimensions, or the dataspace extent. They can be queried along with the maximum sizes.
 

	
	simple hyperslab
 

	The simplest type of selection is a simple hyperslab. This is an n-dimensional rectangular sub-set of a dataset where n is equal to the dataset’s rank. Other available selections include a more complex hyper­slab with user-defined stride and block size, a list of independent points, or the union of any of these.
 

	
	Storage Properties
 

	Storage Properties
 

	
	symbolic links
 

	There are two kinds of links, hard links and symbolic links. Hard links are reference counted; symbolic links are not. When an object is created, a hard link is automatically created. An object can be deleted from the file by removing all the hard links to it.
 

	


	    
		
			Contents

		
		
		
				
				Copyright Notice and License Terms
			

			
				
				The HDF Group Help Desk
			

			
				
				Update Status
			

			
					
					1. The HDF5 Data Model and File Structure
					
				
					
					1.1. The Abstract Data Model
					
				
				
				1.1.1. File
			

			
				
				1.1.2. Group
			

			
				
				1.1.3. Dataset
			

			
				
				1.1.4. Dataspace
			

			
				
				1.1.5. Datatype
			

			
				
				1.1.6. Attribute
			

			
				
				1.1.7. Property List
			

			
				
				1.1.8. Link
			

			
					

				

				
					
					1.2. The HDF5 Storage Model
					
				
				
				1.2.1. The Abstract Storage Model: the HDF5 Format Specification
			

			
				
				1.2.2. Concrete Storage Model
			

			
					

				

				
					
					1.3. The Structure of an HDF5 File
					
				
				
				1.3.1. Overall File Structure
			

			
				
				1.3.2. HDF5 Path Names and Navigation
			

			
				
				1.3.3. Examples of HDF5 File Structures
			

			
					

				

				
					

				

				
					
					2. The HDF5 Library and Programming Model
					
				
					
					2.1. The HDF5 Programming Model
					
				
				
				2.1.1. Creating an HDF5 File
			

			
				
				2.1.2. Creating and Initializing a Dataset
			

			
				
				2.1.3. Closing an Object
			

			
				
				2.1.4. Writing or Reading a Dataset to or from a File
			

			
				
				2.1.5. Reading and Writing a Portion of a Dataset
			

			
				
				2.1.6. Getting Information about a Dataset
			

			
				
				2.1.7. Creating and Defining Compound Datatypes
			

			
				
				2.1.8. Creating and Writing Extendable Datasets
			

			
				
				2.1.9. Creating and Working with Groups
			

			
				
				2.1.10. Working with Attributes
			

			
					

				

				
				
				2.2. The Data Transfer Pipeline
			

			
					

				

				
					
					3. The HDF5 File
					
				
				
				3.1. File Access Modes
			

			
				
				3.2. File Creation and File Access Properties
			

			
				
				3.3. Low-level File Drivers
			

			
					
					3.4. Programming Model for Files
					
				
				
				3.4.1. Creating a New File
			

			
				
				3.4.2. Opening an Existing File
			

			
				
				3.4.3. Closing a File
			

			
					

				

				
				
				3.5. Using h5dump to View a File
			

			
				
				3.6. File Function Summaries
			

			
				
				3.7. Creating or Opening an HDF5 File
			

			
				
				3.8. Closing an HDF5 File
			

			
					
					3.9. File Property Lists
					
				
				
				3.9.1. Creating a Property List
			

			
				
				3.9.2. File Creation Properties
			

			
				
				3.9.3. File Access Properties
			

			
					

				

				
					
					3.10. Alternate File Storage Layouts and Low-level File Drivers
					
				
				
				3.10.1. Identifying the Previously-used File Driver
			

			
				
				3.10.2. The POSIX (aka SEC2) Driver
			

			
				
				3.10.3. The Direct Driver
			

			
				
				3.10.4. The Log Driver
			

			
				
				3.10.5. The Windows Driver
			

			
				
				3.10.6. The STDIO Driver
			

			
				
				3.10.7. The Memory (aka Core) Driver
			

			
				
				3.10.8. The Family Driver
			

			
				
				3.10.9. The Multi Driver
			

			
				
				3.10.10. The Split Driver
			

			
				
				3.10.11. The Parallel Driver
			

			
					

				

				
					
					3.11. Code Examples for Opening and Closing Files
					
				
				
				3.11.1. Example Using the H5F_ACC_TRUNC Flag
			

			
				
				3.11.2. Example with the File Creation Property List
			

			
				
				3.11.3. Example with the File Access Property List
			

			
					

				

				
				
				3.12. Working with Multiple HDF5 Files
			

			
					

				

				
					
					4. HDF5 Groups
					
				
					
					4.1. Description of the Group Object
					
				
				
				4.1.1. The Group Object
			

			
				
				4.1.2. The Hierarchy of Data Objects
			

			
				
				4.1.3. HDF5 Path Names
			

			
				
				4.1.4. Group Implementations in HDF5
			

			
					

				

				
				
				4.2. Using h5dump
			

			
				
				4.3. Group Function Summaries
			

			
					
					4.4. Programming Model for Groups
					
				
				
				4.4.1. Creating a Group
			

			
				
				4.4.2. Opening a Group and Accessing an Object in that Group
			

			
				
				4.4.3. Creating a Dataset in a Specific Group
			

			
				
				4.4.4. Closing a Group
			

			
				
				4.4.5. Creating Links
			

			
				
				4.4.6. Discovering Information about Objects
			

			
				
				4.4.7. Discovering Objects in a Group
			

			
				
				4.4.8. Discovering All of the Objects in the File
			

			
					

				

				
				
				4.5. Examples of File Structures
			

			
					

				

				
					
					5. HDF5 Datasets
					
				
				
				5.1. Dataset Function Summaries
			

			
					
					5.2. Programming Model for Datasets
					
				
				
				5.2.1. General Model
			

			
				
				5.2.2. Create Dataset
			

			
				
				5.2.3. Data Transfer Operations on a Dataset
			

			
				
				5.2.4. Retrieve the Properties of a Dataset
			

			
					

				

				
					
					5.3. Data Transfer
					
				
				
				5.3.1. The Data Pipeline
			

			
				
				5.3.2. Data Pipeline Filters
			

			
				
				5.3.3. File Drivers
			

			
				
				5.3.4. Data Transfer Properties to Manage the Pipeline
			

			
				
				5.3.5. Storage Strategies
			

			
				
				5.3.6. Partial I/O Sub-setting and Hyperslabs
			

			
					

				

				
					
					5.4. Allocation of Space in the File
					
				
				
				5.4.1. Storage Allocation in the File: Early, Incremental, Late
			

			
				
				5.4.2. Deleting a Dataset from a File and Reclaiming Space
			

			
				
				5.4.3. Releasing Memory Resources
			

			
				
				5.4.4. External Storage Properties
			

			
					

				

				
					
					5.5. Using HDF5 Filters
					
				
				
				5.5.1. Using the N-bit Filter
			

			
				
				5.5.2. Using the Scale-offset Filter
			

			
				
				5.5.3. Using the Szip Filter
			

			
					

				

				
					

				

				
					
					6. HDF5 Datatypes
					
				
				
				6.1. Introduction and Definitions
			

			
					
					6.2. HDF5 Datatype Model
					
				
				
				6.2.1. Datatype Classes and Properties
			

			
				
				6.2.2. Predefined Datatypes
			

			
					

				

				
					
					6.3. How Datatypes are Used
					
				
				
				6.3.1. The Datatype Object and the HDF5 Datatype API
			

			
				
				6.3.2. Dataset Creation
			

			
				
				6.3.3. Data Transfer (Read and Write)
			

			
				
				6.3.4. Discovery of Data Format
			

			
				
				6.3.5. Creating and Using User-defined Datatypes
			

			
					

				

				
				
				6.4. Datatype (H5T) Function Summaries
			

			
					
					6.5. Programming Model for Datatypes
					
				
				
				6.5.1. Discovery of Datatype Properties
			

			
				
				6.5.2. Definition of Datatypes
			

			
					

				

				
					
					6.6. Other Non-numeric Datatypes
					
				
				
				6.6.1. Strings
			

			
				
				6.6.2. Reference
			

			
				
				6.6.3. ENUM
			

			
				
				6.6.4. Opaque
			

			
				
				6.6.5. Bitfield
			

			
					

				

				
				
				6.7. Fill Values
			

			
					
					6.8. Complex Combinations of Datatypes
					
				
				
				6.8.1. Creating a Complicated Compound Datatype
			

			
				
				6.8.2. Analyzing and Navigating a Compound Datatype
			

			
					

				

				
				
				6.9. Life Cycle of the Datatype Object
			

			
				
				6.10. Data Transfer: Datatype Conversion and Selection
			

			
				
				6.11. Text Descriptions of Datatypes: Conversion to and from
			

			
					

				

				
					
					7. HDF5 Dataspaces and Partial I/O
					
				
				
				7.1. Dataspace (H5S) Function Summaries
			

			
					
					7.2. Definition of Dataspace Objects and the Dataspace Programming Model
					
				
				
				7.2.1. Dataspace Objects
			

			
				
				7.2.2. Dataspace Programming Model
			

			
					

				

				
					
					7.3. Dataspaces and Data Transfer
					
				
				
				7.3.1. Data Selection
			

			
				
				7.3.2. Programming Model
			

			
					

				

				
				
				7.4. Dataspace Selection Operations and Data Transfer
			

			
					
					7.5. References to Dataset Regions
					
				
				
				7.5.1. Example Uses for Region References
			

			
				
				7.5.2. Creating References to Regions
			

			
				
				7.5.3. Reading References to Regions
			

			
					

				

				
					
					7.6. Sample Programs
					
				
				
				7.6.1. h5_write.c
			

			
				
				7.6.2. h5_write.f90
			

			
				
				7.6.3. h5_write_tr.f90
			

			
					

				

				
					

				

				
					
					8. HDF5 Attributes
					
				
					
					8.1. Programming Model for Attributes
					
				
				
				8.1.1. To Open and Read or Write an Existing Attribute
			

			
					

				

				
				
				8.2. Attribute (H5A) Function Summaries
			

			
					
					8.3. Working with Attributes
					
				
				
				8.3.1. The Structure of an Attribute
			

			
				
				8.3.2. Creating, Writing, and Reading Attributes
			

			
				
				8.3.3. Accessing Attributes by Name or Index
			

			
				
				8.3.4. Obtaining Information Regarding an Object’s Attributes
			

			
				
				8.3.5. Iterating across an Object’s Attributes
			

			
				
				8.3.6. Deleting an Attribute
			

			
				
				8.3.7. Closing an Attribute
			

			
					

				

				
				
				8.4. Special Issues
			

			
					

				

				
					
					9. HDF5 Error Handling
					
				
				
				9.1. Programming Model for Error Handling
			

			
				
				9.2. Error Handling (H5E) Function Summaries
			

			
					
					9.3. Basic Error Handling Operations
					
				
				
				9.3.1. Error Stack and Error Message
			

			
				
				9.3.2. Print and Clear an Error Stack
			

			
				
				9.3.3. Mute Error Stack
			

			
				
				9.3.4. Customized Printing of an Error Stack
			

			
				
				9.3.5. Walk through the Error Stack
			

			
				
				9.3.6. Traverse an Error Stack with a Callback Function
			

			
					

				

				
					
					9.4. Advanced Error Handling Operations
					
				
				
				9.4.1. More Error API Functions
			

			
				
				9.4.2. Pushing an Application Error Message onto Error Stack
			

			
					

				

				
					

				

				
					
					10. Properties and Property Lists in HDF5
					
				
					
					10.1. Property List Classes, Property Lists, and Properties
					
				
				
				10.1.1. Property List Classes
			

			
				
				10.1.2. Property Lists
			

			
				
				10.1.3. Properties
			

			
					

				

				
					
					10.2. Programming Model for Properties and Property Lists
					
				
				
				10.2.1. Using Default Property Lists
			

			
				
				10.2.2. Basic Steps of the Programming Model
			

			
				
				10.2.3. Additional Property List Operations
			

			
					

				

				
				
				10.3. Generic Properties Interface and User-defined Properties
			

			
				
				10.4. Property List Function Summaries
			

			
				
				10.5. Additional Property List Resources
			

			
				
				10.6. Notes
			

			
					

				

				
				
				11. Additional Resources
			

			
				
				Index
			

			
				
				Glossary
			

			

		
	    
	OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig5.JPG
S Labrary ors £l

Caltang Progean
ErTT)
S e [ ey
DO o cemrinesitn, | -
B )
f e -
s

> [N}
Data || Fite

Pipeline | Driver

Taaspace | [batatyee

[Tramater |
roperties






OEBPS/HDF5_Users_Guide/Groups/groups_fig29_d.JPG
groupl group2

dset1





OEBPS/HDF5_Users_Guide/Groups/groups_fig29_c.JPG
groupt group2





OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig2.JPG
e e
Czeation faccess —
properties | [properies| ooy

Asmopen

i

Ll gy S O
C 21 e wry |
= pe=






OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig1.JPG
Attribute
Datatype [¢—<3 Dataset Dataspace
describesonazanent b PP —————






OEBPS/HDF5_Users_Guide/Groups/groups_fig28_d.JPG





OEBPS/HDF5_Users_Guide/Groups/groups_fig28_c.JPG
groupt group2





OEBPS/HDF5_Users_Guide/Groups/groups_fig29_b.JPG
groupt group2





OEBPS/HDF5_Users_Guide/Groups/groups_fig29_a.JPG
groupt group2





OEBPS/HDF5_Users_Guide/Groups/groups_fig28_b.JPG
groupl





OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig19.JPG





OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig16.JPG





OEBPS/HDF5_Users_Guide/Datasets/Dsets_NbitInteger1.JPG
| byte 3 | byte 2 | byte 1 | byte 0 |

| SPPPPPEP | PPPPPPEP | PPPEPPEP | PPPEPPEP|





OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig20.jpg
. 7.

scanl deta

E =T

oz

A

|

scanz.data

.





OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig13.JPG
Besder

Chunked






OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig12.JPG





OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig15.JPG
Fanoer






OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig14.JPG
Compact:

Besder






OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig10.JPG
1/0 Iniziation
s5Dread ESDurite

f }

Vemory Eyperslab Operation

Datatype Conversicn

N
4HA

Filc Hyperslab Operation
Gather Scatver

Filter Pipeline

Vireaal File Driver

G > (D o

H





OEBPS/HDF5_Users_Guide/Datasets/Dsets_fig9.JPG
Pkt surape

rr——

Jrm——

i






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig6.JPG
Byte 0 || syce 1 || Byee 2 || Byce 5
[o1231567[35012345 [67850123 15678501

4) The H5T_NATIVE_INT datatype

[Bwee 0 |[ Sve 1 | Syce 2 || Byee 3 | Byee & | 5yee & | Syee & [ Byea 7
[01234567 5012995 [e790123 [s567890L [2345 6783 01233567 B30L2345 67690123

b) Precision is extended to 128-bits, and the size is automatically adjusted.

[Bvee o | ovee 1 | oyee 2 |[ oyee s | oyee 2 | syee 5 | syee o [ oyee 7
[02231567 5012915 [e7e00123 15678501 [ra 155783 p1221567 B3012315 67890123

©) The byte order is switched.





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig5.JPG
Datatype

byreOrder:B0type

Gper (nid_t loc, char +, name|izevura hid
copy (nidt ti6) recurn mid ©
create (nid_class_t clss, size_t size) e






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig20b.JPG
T sweo [ Brei || swez | Bves
I | teeser || eeserier || ceseseee
I [ sves [ evee e [ e
_coosseos || oosoeoss || ovosweos || soseeens






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig7.JPG
Big-Endian: Offset =0

Byte 0 || Byte 1 || Byte 2 || Byte 3
(01232567 29012345 [7890123 45678501
[PPPPPPPE|PPPPPPPE|00010001 00100010

Big-Endian: Offset = 16

Byce 0 |[ Byce 1 || Byce 2 || Byce 3
01232567 29012345 [7890123 45678901
(00010001 [00100010|[PPPPPRER|PPPFEEEE|

Little-Endian: Offset = 0

Byte 0 || Byte 1 || Byte 2 || Byte 5
(01232567 29012345 [7890123 456728901
[00010001[00100010|[PPPPPPER|PPPFEEEE|

Little-Endian: Offset = 16

Byte 0 || Byte 1 || Byte 2 || Byte 5
(01232567 29012345 [7290123 45678901
[PPPPPPPE|PPPPPPPR|00010001 00100010






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig47.JPG
o | G | o | o e ]
[
[vanve ovr | [vave ciiax | [varrve pousLe | [marve o1
. EoY e

NATIVE_FLOAT

1281






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig20a.JPG
C_sweo | Brei || swez | swes

[ osmnsass || cessases || ocemscas | cosssses

[ owecs Byt s EC I

= i

T oves [ oveeso [ osveus
= e
e 12 [ sve1s [ sveus

| [ coceress |






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig2.JPG
Datatype Class

Datatype
Property

setungs

Datatype

Datatype
Property






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig16b.JPG





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig1.JPG
Dataset

Dataspace Datatype

The dataspace The datatype
defines the defines the
organization ofthe format of a single
data elements. data element






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig16c.JPG





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig4.JPG
B

=] | [==]

sctiele Intsger

[ reterenen ]






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig33.JPG
_twiiata =7

The ceta
elements

[ 7
i P
F Y
-
S -
£
s
[
[N
ST
Byte D Byte 1 Byte 2 Byte 3
aasasna[anasanasasasasaaanaanans
Byte 0 Byte 1 Bite 2 Byvte 3
is1asa3[asazaaslinanaanalaaasass
Syea | oyes | Bres | ovev
wonuoons | BhnbuonD | oennonon | nooonoen






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig3.JPG
Datatype.

4
Composic: 1 Composite
Datatype Dataype

Properties






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig16a.JPG





OEBPS/HDF5_Users_Guide/Datasets/Dsets_NbitInteger2.JPG
I byte 3 | byve 2 | byce 1 | byte 0 |
1 1
1222222221 22225 | BPR | BPPRREPR| PEPR| 2222

Ttruncated bits





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig40.JPG
ofgaet of

a0 [ sret | mwez | s
“aiacer

R tue T~ [ 20000000 | Go000105 | 00000000 | Gooooson

Bree 5 By s | ree 7

cceses o vz ___—ouu0GG00 | oooouers | oooooueo | ooovosto

22 value 0 e | Bres | e o mre

50000000 | ao000500 | 00000000 | soogosas

otses o Byee 12 | Byee 15 | Byee 14 | Bwe 16
e

So000005 | os00001: | G000000 | Govosoor

is 4, value 3






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig45.JPG
1

[comvows | [ome | [ | [ w

[ ] fomond [ ]






OEBPS/HDF5_Users_Guide/Datasets/Dsets_NbitFloating2.JPG
| byte 3 | byte 2 | byte 1 | byte 0
1

122222SEE | EEEE |MMMM | MMM | M| 2222222 ]
1

cTuncated mantissa





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig16d.JPG
P e

“Lazy programsrs.”






OEBPS/HDF5_Users_Guide/Datasets/Dsets_NbitFloating1.JPG
| byte 3 | byte 2 | byte 1 | byte O |

| SEEEEEEE | EMI0044 | 0000044 | 10000000¢|





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig17a.JPG
Index Name

R Ta—
N —
R —
N T —
R —
A —
T —
B






OEBPS/HDF5_Users_Guide/HDF5_UG_Title/logo_bluegreen_txt.jpg
Fr

The HDF Group





OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig2.JPG
Application
erogran






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig1.JPG
—

—

Py I e
1 et S
I oes avte
nbatreat
freyiril — .
v v
— -
imorements.
s stored Data






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig28.JPG
Datatype is
3X2 Array

offset of data
element s 0

offset of

[00]is0 —

offset of

\

0 1 2

[0.1]is4

offset of next
data element
is 24

-

00]=2 10.1]=b
1oj=d il=e
Byte 0 Byte 1 Byte 2 Byte 3
a2222a22ajaaaaaaaalaaaaaaaalaaaaaaaa
Byte 4 Byte 5 Byte 6 Byte 7
,| bbbbbbbD | bbbbbbbh [hobbbbbb | bhobbbbb
Byte § Byte 9 Byte 10 Byte 11
cccccccclcccccccc|cccccccclccccccce
Byte 12 Byte 13 Byte 14 Byte 15
dddddddd | dddddddd | dddddddd | ddddddda
Byte 16 Byte 17 Byte 16 Byte 19
cecceeee | cceeeece | eeccceee | cceeeeee
Byte 20 Byte 21 Byte 22 Byte 23
FECFEERE | CFEFEEET | CEFEEOFT | FEEEFEFS
Byte 24 Byte 25 Byte 26 Byte 27
Byte 26 Byte 29 Byte 30 Byte 32

Total size of Array Datatype Is 3X 24 = 24 bytes. Nate
that next element begins on byte 25






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig58.JPG
Iilf

RED
GREEN
BLUE

WHITE
BLACK

RED
GREEN
BLUE
WHITE
BLACK

0x0001
0x0002
0x0004
0x0008
0x0010





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig26_pic4of4.JPG





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig60.JPG
Compound Datatype, with fields aligned on 4-byte boundaries

(memory)
affsstof Byte 0 Byte 1 Byte 2 Byte 3
50 2a2aa2aaalananaaaalaaaaaaaalanaaaaaa
— / Byte 4 Byte 5 Byte 6 Byte 7
o bhbbbhbb [00000000/00000000[00000000
is4 Byte 6 Byte 9 Byte 10 Byte 11
affset of cccgcecc|ccccccec/cccccccc|ccccecce
A Ee 2 Byte 13 Byt 14 Byt 15

Tccccccc|ccccccec|coccccceccccccae

3 bytes of padding
after '0", offset 5§ Automatically aligned during
transfer

Compound Datatype, with compacted fields (Disk)

ofsetor o™ |__Be0 Byte 1 B2 | Bes
50 32222223/23322323]a22323223| asaaaaaa
ofsetor _"|__Bvte4 Byte 5 Byte 6 Byte 7
S bhbbbhbb [cocececs|cececscs| cocceoce
54 T o Byte 9 Byte 10 Byte 11
e Cccccccclcccccccc|cecceccs| cecoccee
55 Byte 12
cccccccse

No padding
between "b" and 'c"






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig200001.JPG
Application
erogran






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig3_a.JPG
Agplicaton

Variatle

Table

Application
D
Struchues






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig57b.JPG
[ sweeo | swe: [ swez |
SobbbEbD cassnaca Gasasias
e e © e

R B |






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig26_pic1of4.JPG
e
Datasets
o
o
Datasets

[ —





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig50.JPG
, offset 0
—

T2, ffset 16

T4, offset 04
e

Byte O Byte 1 Byte 2 Byte 3
2222222a[aaaaaaaalaanaaaaaal asaaaaaa
Bytea Byl o Byle & Byie 7

bbbbbbbh
Byte & Eyte 0 Byte 10 Byte 11
cccccccclccccccec|ecccccee| secceece
Eyte 12 Byte 12 Byte 14 Byte 15
cccccccclocceccec|cecceccc cococeet
Eyte 16 Byte 17 Byte 18 Byte 19
COEOTOrr | reeereer | eoereeer | reeeeeee
Byte 20 Byte 21 Byte 22 Byte 23
9us00ggy | vesdoguy | gususae | Bogauggy
Eyte 24 Byte 25 Byte 26 Byt 27
00000000[00000000[00000000| 10000000
Eyte 28 Byte 29 Byte 50 Bytz 31
00000000[00000000[00000000[ 00000001
Byte A0 Byte 61 Byte 62 Byte 63
00000000/00000000]00000000| 00001010
Byee b4 Btz 69 e b6 Byie b7
'a' v R o
Bye 68 Eyle 89 Byte 90 Byte 91

00000000]






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig23.JPG
ofsass of var
o

ofsass of "B
s

ofsass of "ot
e

—

3 bytes of padding
after "b7, offses 5

e s | Bre T | Ere | me s
Srved | Bvees | Bmec | Bmet
bbb |, 30000030 | 00000006 | 50003000
Byce 57| Byee 5 | Byee 10 | Byee 11
e 12 | Byve 13 | Byve 13 | By 16

Total size of Compound Datacype is 16 byces





OEBPS/HDF5_Users_Guide/Datatypes/dtypes_fig51new.JPG
obytes | Eobytes | eobytes | @obytes
B9bytes | Bobytes | Bobytes | @abytes
59 byte 90yies |\B9bytes | B9 0ytes
T |12 7]
N~






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig26_pic3of4.JPG





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig20c.JPG
C__sweo | Brei || swez | Bwes
[—ov000000 Goocoooo || ovooooon | oooocooo
[ swes B Syes 6 e
[ oooosoes | coososes || ooconeen 0000001
T mvese [ meew [ _sve s
[oooovors__vovooowo || | oooomowe






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig26_pic2of4.JPG





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig20d.JPG
C_sweo | Brei || swez | swes
o I | I ar
ETE [ evcee [ sreeov
0003000






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig9.JPG
sign pos (28)

[ Byceo || Bycei || syce2 || syee s
[ 01233567 | ssoizsas | evesoizs | asevesor
[ [ [ | seans






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig57a.JPG
Bvwe 0 | Svee i ] Bwe2 || Bwes
maeas Soobons s Sadasaas
Byt s e Byee ¢ BTN
Ererl e s R B






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig8.JPG
Byte 0 | Byte 1 || Byte 2 | Byte 3

set o 07 Gser data value Set o 1

[o1z3s587 \ 3012335 \ 7830123 \ 35678801
[ ooo00000 | 00000000 | 00000000 || 00sppmED
‘ otteer @) precision (24) oad






OEBPS/HDF5_Users_Guide/Datatypes/dtypes_fig57_arrowWithText.JPG
Automatically byte swapped
during the B5Drezd





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig11.JPG
offses of - —7 | Byte 0 || byce 1 Byte z [ Byie 5
[ [

et ree | mwee s [ ovee 7

e s | reeeeeer

Byce & | Byee s [ Bren

Breeces Tii3ii33 | 1ii3di13 | 1331130 | i331di

ey Byce 12 || byee 15 || Byee 11 | By 15

| wee | Bwer | mweis | Byeio

rafet rrreeerr | reeereer | reeeeeer | reeceeer

/ Srem | Brerl [ Bwen [ B s

s Trrerrer | ceeereer | rereerer | reeceoer

/ Syce 21 | Byee 25 | syce 26 | Byee o7

sersew of Saiaian || saiiii || v | i

ey Syes 22 | Byee 29 Syce 30 | Byee a1

Total size of compound datatype is 32 bytes.






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig53.JPG
rra7 creats,
roate,

o sta

BsTelose

eysToomis

Special case i
named datatype is
still referenced.
Not shown in this
iagaram

iy
: isGuntint
Stored

as object

EC S

Transient

Transicnt
reference o

DESTCopy

IMmorcre.
HoActs

Stored
in object

stored datatype|

Pointer to
stored dataty pe
stored
in object





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig10.JPG
/

offser of
imaginary

o

Bree 0 || Bvee © Brte 2| Byie s
Teroeeee | creereer | rerceeee | roeeeeer
Byee || By s Byee & [ Byee 7
Trreeree | reeereer | rereeree | reeeeeer
Byres || syes | mweto | Byeen
Siini | Gaan | o | i
Byce 12 | Byee 13 | Byce 13 | Byee is
T || o | oo [ onoo

Total size of compound datatype is 16 bytes





OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig54.JPG
Modifiable

Use datatype

closs

Change properties

Use datatype

Predefined

Immutable

se datatype






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig8.JPG
Dataspace
Tankiint

current_sizethsize t[ rank ]
maximum_sizeihsize tl rank ]

e






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig7_b.JPG
Filter § ExternalFile
T Attribute ERE

e s ot J Y

Shomniesidim b o Sizethaisect
e Lo

1

Dataset A

requiredInpipeline storedIn

[T p——

shunte_ndtme: ine

£111_value_typerhid_t

£411_value:veids

Data

describesonezlenent B ddescribeshrrayofElenents






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig10.JPG
Datatype

Hamed Object.

0.+

Attribute

pataspace

dascrivesorerianent b

Data

PPT—————





OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig9.JPG
[

[=]

[oee ]

e |

[menee]

wazarance | [ mtesar

po— p—





OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig4_a.JPG
Root Group.






OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig7.JPG
TR
e \
\\\\ N
NN Lo
1 S e

‘memory dataspace. Total fuaber of data
s wust b vqual; saber and
“hapo of hyporsiass on diffor






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig4_b.JPG





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig8.JPG
=
ez o

7z
z

///
-

K requtar series of
" "hincks fenm & 2D avreay in
ontiguous sequence ot & certain
affaot in 6 1D areray,






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig6.JPG
Naned Object.

obs_id:obs_ia

A

Group

Dataset

Named
Datatype






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig5.JPG
Attribute






OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig6.JPG
— TR
e §§
i
-

& hypersist from 5 2D seray to the
Cornar of 8 smetier 2D sersy.






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig11_b.jpg
[_Propescy taet |
ClassiHoE_class_t

create (class)
gec_class ()

ame:stzane
valussRSThatatire





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig2a.JPG





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig2b.JPG
o
ol






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig3_c.JPG
Storzge Sysem

Storage System AP

Few | Soe

e List File
Dz

Brme Block.

HDFS
Stoage
Model






OEBPS/HDF5_Users_Guide/Datatypes/Dtypes_fig62.JPG
Compound Datatype, with 3 fields aligned on 4-byte boundaries

—
Sifsetoftat Byte 0 Byte 1 Byte 2 Byte 3
50 2aaaaaaalasaaaaaalaaaaaaaalaaaaaaaa
BBt / Byte 4 Byte 5 Byte 6 Byte 7
i 00000000/00000000[00000000
is4 Byte 8 Byte 9 Byte 10 Byte 11
offset of ccccecccclccccccec|cccccccclccccccce
a Byte 12 Byte 13 Byte 14 Byte 15
cccccccclcccccceccccccccclccccccce
Atomatically selected and
aligned ouring transfer. "b"
is skipped in each element
Compound Datatype, with selected fields (memory).
offsst ot |__BVie D Byte 1 Byte 2 Byte 3
i50 PjiRasadaila aaaal e ava s etenn
offset of Byte 4 Byte 5 Byte 6 Byte 7
et cccccccclcecccccc|ceccecce] cocoooce
54 Byte 8 Byte 9 Byte 10 Byte 11
ccccecccelceccccec|ceccecce] cocoooce






OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig1new.JPG
current_size:hsize t[rank]
maximum_size:hsize t[rank]

1






OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig4.JPG
4 x 3 in memory

2) Read the data and change the Dataspace:

ESDread( ..., mem space,

Dataspace Dataspace
TamEe = 2 TamEE = 2
carzent_size:hsize(2) = (3,4} carzent_size:hsize(2) = (4,3}
manimun_size:hsizs 2] = (3,4 maximum_size:hsize 121 = (4,3}

b) The Dataspace in the File

) The Dataspace for memory






OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig5.JPG
T
[e[B]cld] [e[la[n]
[<T1]

CalmTe [a T T 17 o teteer, cnenk oy avns






OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig2c.JPG





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig2d.JPG
e ]2 ]

3]s






OEBPS/HDF5_Users_Guide/LibraryAndProgrammingModel/Pmodel_fig5_b.jpg





OEBPS/HDF5_Users_Guide/LibraryAndProgrammingModel/Pmodel_fig5_a.jpg





OEBPS/HDF5_Users_Guide/LibraryAndProgrammingModel/Pmodel_fig5_d.jpg
+ inson o€ mpersians 1a e arvasmace

munker and shape of hyperslsbe can differ





OEBPS/HDF5_Users_Guide/LibraryAndProgrammingModel/Pmodel_fig5_c.jpg
nce of poiave wih o regular
C otnes itk mo reguia: pavier n 3
3 srzay





OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig40_b.JPG





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig21.JPG





OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig40_a.JPG





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig22.JPG
) Dataset 1: data

) Dataset2: Compound Data: axrayof {String, Region Refernce}

Watingon OC | <region re1 1>
Batimor, o | <ragion rer2>
Stormt | <ragion rer3>






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig40_d.JPG





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig19b.jpg





OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig40_c.JPG





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig19c.jpg





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig14.JPG
5 0 ) e 2 e i e

16

15

14

13

12

19

10
18

17






OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig16a.jpg





OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig38_b.JPG
dset1






OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig9.JPG
ey

& sequence of points with no regutar

pattern from a.2D array o  sequence

O pounts with 10 regular pattern in 5
D errey.






OEBPS/HDF5_Users_Guide/DataModelAndFileStructure/Dmodel_fig38_a.JPG





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig10.JPG
10

//O






OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig19a.jpg





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig16b.jpg





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig16c.jpg





OEBPS/HDF5_Users_Guide/Groups/Group_fig1.jpg
soot growp

Datesat?

Datasatd





OEBPS/HDF5_Users_Guide/TheFile/Files_fig4.JPG
FileLhs

Root goup

File2.h5






OEBPS/HDF5_Users_Guide/Groups/Group_fig2_8.jpg





OEBPS/HDF5_Users_Guide/TheFile/UML_FileAndProps.gif
HDF file

0..% 0..%

1

File access properties

1

File creation properties






OEBPS/HDF5_Users_Guide/LibraryAndProgrammingModel/Pmodel_fig26.JPG
Storage

Decompress

scacter/
gather

ranstorn

T

e

e






OEBPS/HDF5_Users_Guide/TheFile/Files_fig3.JPG
File1hs

Root graup

File2.h5

Rootgrovp






OEBPS/HDF5_Users_Guide/TheFile/VFL_Drivers.jpg
HDF5 application

Virtual file layer (VEL)* Menory Hetwork
File drivers File drivers driver ariver
(usm sz ) (usm wrr)  (wemen ) (wsm_come ) (isen_smeam)

(s _stomo) (sen_spur)
(fsr_FueL)
\

“Storage" level

Files

Network






OEBPS/HDF5_Users_Guide/LibraryAndProgrammingModel/Pmodel_fig5_e.jpg
B —






OEBPS/HDF5_Users_Guide/Attributes/Shared_Attribute.jpg
Dacasecl

Attribute

Object pointer

Datasecz

Artribute

Object pointer






OEBPS/HDF5_Users_Guide/PropertyLists/PropListEcosystem.png
Property List Class

Property List

Property





OEBPS/HDF5_Users_Guide/LibraryAndProgrammingModel/Pmodel_fig3.JPG
[ I-]-]
Honn
[FI-1-]

H

BN OENODEEE
[l oo ] )]
LIS TT1]

b) Extend 0 103

EEEERE
EERER
EEEEE
EEEEE
Baaa
EEREE

llelsle

) Extend o 105,





OEBPS/HDF5_Users_Guide/Dataspaces/Dspace_fig23.JPG





OEBPS/HDF5_Users_Guide/LibraryAndProgrammingModel/Pmodel_fig2.JPG
GGl





OEBPS/HDF5_Users_Guide/Attributes/UML_Attribute.jpg
Primazy data object

o1

attribute





OEBPS/HDF5_Users_Guide/PropertyLists/PropListClassInheritance.png
Property List Class Root

STRCPL OCPL

ARVAN

FAPL FMPIB LCPL ACPL GCPL DCPL TCPL OCPYPL GAPL DAPL TAPL DXPL

FCPL





OEBPS/ehlpdhtm.js
// Dynamic HTML JavaScript 

// Copyright © 1998-2012 Adobe Systems Incorporated. All rights reserved.

// Version=9.0



// Warning:Do not modify this file. It is generated by Adobe RoboHelp® and changes will be overwritten.



//// Segment Begin -- (JavaScript 1.0)



/// Section Begin - General and relative topics(JavaScript 1.0)



//{{HH_SYMBOL_SECTION

var HH_ChmFilename = "";

var HH_WindowName = "";

var HH_GlossaryFont = "";

var HH_Glossary = "";

var HH_Avenue = "";

var HH_ActiveX = false;

//}}HH_SYMBOL_SECTION



//Begin to support previous generic parameters

//Get the information about the browser.

var gstrBsAgent 	= navigator.userAgent.toLowerCase();

var gnBsVer	   		= parseInt(navigator.appVersion);



var gbBsOpera		= (gstrBsAgent.indexOf('opera') != -1);

var gbBsKonqueror	= (gstrBsAgent.indexOf('konqueror') != -1);

var gbBsSafari		= (gstrBsAgent.indexOf('safari') != -1);

var gbBsIE  		= (gstrBsAgent.indexOf('msie') != -1) && !gbBsOpera && !gbBsKonqueror && !gbBsSafari;

var gbBsNS  		= (gstrBsAgent.indexOf('mozilla') != -1) && ((gstrBsAgent.indexOf('spoofer') == -1) && (gstrBsAgent.indexOf('compatible') == -1)) && !gbBsOpera && !gbBsKonqueror && !gbBsSafari;



var gbBsMac			= (gstrBsAgent.indexOf('mac') != -1);

var gbBsWindows		= ((gstrBsAgent.indexOf('win') != -1) || (gstrBsAgent.indexOf('16bit') != -1));

var gbBsSunOS		= (gstrBsAgent.indexOf("sunos") != -1);



var gbBsIE3Before 	= ((gbBsIE) && (gnBsVer <= 2));

var gbBsNS3Before 	= ((gbBsNS) && (gnBsVer <= 3));



var gbBsNS2			= ((gbBsNS) && (gnBsVer <= 2));

var gbBsNS3			= ((gbBsNS) && (gnBsVer == 3));

var gbBsIE300301	= ((gbBsIE) && (gnBsVer == 2) && ((gstrBsAgent.indexOf("3.00") != -1)||(gstrBsAgent.indexOf("3.0a") != -1)||(gstrBsAgent.indexOf("3.0b")!=-1)||(gstrBsAgent.indexOf("3.01")!=-1)));

var gbBsIE302		= ((gbBsIE) && (gnBsVer == 2) && (gstrBsAgent.indexOf("3.02") != -1));



var gbBsNS4			= ((gbBsNS) && (gnBsVer >= 4));

var gbBsNS6			= ((gbBsNS) && (gnBsVer >= 5));

var	gbBsNS7			= false;



var gbBsIE4			= ((gbBsIE) && (gnBsVer >= 4));

var gbBsIE5			= false;

var gbBsIE55		= false;

var gbBsIE7			= false;



var gbBsOpera6		= false;

var gbBsOpera7		= false;



var gbBsKonqueror3	= false;

var gbSafari3 		= false ;

var gbAIR			= (gstrBsAgent.indexOf('adobeair')!=-1);

var gbChrome 		= (gstrBsAgent.indexOf('chrome')!=-1);

var isLocal 		= document.location.protocol.substring(0, 4) == "file";

var gbChromeLocal        = window.chrome && isLocal ;

var gbInsideCHM 	= document.location.href.search("::")>0 && document.location.href.search(/chm/i)>0;

var gbBsIsMobile	= (gstrBsAgent.indexOf("mobile") != -1);

if(gbBsIsMobile == false)

{

	gbBsIsMobile = isTouchDevice();

}

function isTouchDevice() {

	return !!('ontouchstart' in window) ? 1 : 0;

}



gbBsIE = (navigator.appName.indexOf("Microsoft") != -1) && !gbBsOpera && !gbBsKonqueror && !gbBsSafari;;



if (gbBsIE)

{

	if (parseInt(navigator.appVersion) >= 4) {

		gbBsIE4 = true;

		if (gbBsIE4) {

			var nPos = gstrBsAgent.indexOf("msie");

			var strIEversion = gstrBsAgent.substring(nPos + 5);

			var nVersion =  parseFloat(strIEversion);

			if (nVersion >= 5)

				gbBsIE5 = true;

			if (nVersion >= 5.5)

			{

				if(nVersion >= 7)

					gbBsIE7 = true;

				gbBsIE55 = true;

			}

		}

	}

}

var re  = new RegExp("rv:([0-9]{1,}[\.0-9]{0,})");

if (re.exec(navigator.appVersion) != null)

{

	gbBsIE = true;

	gbBsIE4 = true;

	gbBsIE5 = true;

	gbBsIE55 = true;

}



if (gbBsNS6)

{

	var nPos=gstrBsAgent.indexOf("gecko");

	if(nPos!=-1)

	{

		var nPos2=gstrBsAgent.indexOf("/", nPos);

		if(nPos2!=-1)

		{

			var nVersion=parseFloat(gstrBsAgent.substring(nPos2+1));

			if (nVersion>=20020823)

				gbBsNS7=true;

		}

	}	

}

if (gbBsOpera)

{

	var nPos = gstrBsAgent.indexOf("opera");

	if(nPos!=-1)

	{

		var nVersion = parseFloat(gstrBsAgent.substring(nPos+6));

		if (nVersion >= 6)

		{

			gbBsOpera6=true;

			if (nVersion >=7)

				gbBsOpera7=true;	

		}

	}

}

if (gbBsKonqueror)

{

	var nPos = gstrBsAgent.indexOf("konqueror");

	if(nPos!=-1)

	{

		var nVersion = parseFloat(gstrBsAgent.substring(nPos+10));

		if (nVersion >= 3)

		{

			gbBsKonqueror3=true;

		}

	}

}



if(gbBsSafari)

{

	var nPos = gstrBsAgent.indexOf("version/");

	if(nPos!=-1)

	{

		var nVersion = parseFloat(gstrBsAgent.substring(nPos+8,nPos+9));

		if (nVersion >= 3)

		{

			gbSafari3=true;

		}

	}

}



if(gbChrome)

{

	//for the time being use same tests as safari

	gbBsSafari 	= true ;

	gbSafari3	= true;

}



function insertAdjacentHTML(obj, where, htmlStr)

{

	if (gbBsIE || gbBsOpera7)

	{

		obj.insertAdjacentHTML(where, htmlStr);

	}

	else if (gbBsNS6 || gbBsSafari)

	{

		var r = obj.ownerDocument.createRange();

		r.setStartBefore(obj);

		var	parsedHTML = r.createContextualFragment(htmlStr);

		

		switch (where){

		case 'beforeBegin':

			obj.parentNode.insertBefore(parsedHTML,obj);

			break;

		case 'afterBegin':

			obj.insertBefore(parsedHTML,obj.firstChild);

			break;

		case 'beforeEnd':

			obj.appendChild(parsedHTML);

			break;

		case 'afterEnd':

			if (obj.nextSibling){

			obj.parentNode.insertBefore(parsedHTML,obj.nextSibling);

			} else {

			obj.parentNode.appendChild(parsedHTML);

			}

			break;

		}

	}

}





function setAttribute(obj, attr, val)

{

	if (gbBsIE)

	    obj.setAttribute(attr,val);

	else

	{

	    if (obj.setAttribute)

	        obj.setAttribute(attr,val);

	    else

	        obj.setProperty(attr,val,null);

	}       

};



function getAttribute(obj, attr)

{

   if (gbBsIE)

	    return obj.getAttribute(attr);

	else

	{

	    if ((obj.getAttribute)&&(obj.getAttribute(attr)))

	        return obj.getAttribute(attr);	  

	     else if ((obj.getPropertyValue)&&(obj.getPropertyValue(attr)))

	        return obj.getPropertyValue(attr) ;

	     else if ((obj.getPropertyCSSValue)&&(obj.getPropertyCSSValue(attr)))

	        return obj.getPropertyCSSValue(attr) ;

	     else

	        return null ;

	}          

};



// Utilities functions.

function BsscHasExtJs()

{

	if( gbBsIE3Before || gbBsNS3Before)

		return false;

	return true;

}



// Register event handler

var gBsOnLoads 			= new Array();	// An array holds all the onload event handler.

var gBsOnClicks 		= new Array();	// An array holds all the onClick event handler.

var gBsOnUnLoads 		= new Array();	// An array holds all the OnUnLoad event handler.

var gBsOnMouseOvers 	= new Array();	// An array holds all the OnMouseOver event handler.

var gBsOnMouseOuts 		= new Array();	// An array holds all the OnMouseOut event handler.



var gbOrignalOnMouseDown = null;



function BsscRegisterOnLoad(funcHandler)

{

	var nLength = gBsOnLoads.length;

	gBsOnLoads[nLength] = funcHandler;

}



function BsscRegisterOnClick(funcHandler)

{

	var nLength = gBsOnClicks.length;

	gBsOnClicks[nLength] = funcHandler;

}



function BsscRegisterOnUnLoad(funcHandler)

{

	var nLength = gBsOnUnLoads.length;

	gBsOnUnLoads[nLength] = funcHandler;

}



function BsscRegisterOnMouseOver(funcHandler)

{

	var nLength = gBsOnMouseOvers.length;

	gBsOnMouseOvers[nLength] = funcHandler;

}



function BsscRegisterOnMouseOut(funcHandler)

{

	var nLength = gBsOnMouseOuts.length;

	gBsOnMouseOuts[nLength] = funcHandler;

}



function BsGeneralOnLoad()

{

	if (!gbBsIE4 && !gbBsNS4)

		return;



	// Make everything visible in navigator

//	if (gbBsNS4) {

//		// Make some special effects items visible

//		var arr ;

//		if (gbBsNS6)

//		    arr = document.getElementsByTagName('*');

//		else

//		    arr = document.layers ;

//		for (var iLayer = 0; iLayer < arr.length; iLayer++) {

//			arr[iLayer].visibility = "visible";

//			arr[iLayer].left = 0 + 'px';

//		}

//	}	

	

}



// If resize the netscape browser, need to reload it.

function BsReDo()

{

  if (innerWidth != origWidth || innerHeight != origHeight)

     location.reload();

}

// End of the local functions.



// The following functions are used by the html files.

function BSSCOnLoad(event)

{

	if( !BsscHasExtJs() )

		return;

	for (var nElement = gBsOnLoads.length - 1; nElement >= 0; nElement--)

		gBsOnLoads[nElement]();

}



function BSSCOnClick(event)

{

	if (!BsscHasExtJs()) return;

		

	for (var nElement = gBsOnClicks.length - 1; nElement >= 0; nElement--)

		gBsOnClicks[nElement]();

}



function BSSCOnUnload(event)

{

	if (!BsscHasExtJs()) return;

	for (var nElement = gBsOnUnLoads.length - 1; nElement >= 0; nElement--)

		gBsOnUnLoads[nElement]();

}



function BSSCOnMouseOver(event)

{

	if (!BsscHasExtJs()) return;

	for (var nElement = gBsOnMouseOvers.length - 1; nElement >= 0; nElement--)

		gBsOnMouseOvers[nElement]();

}



function BSSCOnMouseOut(event)

{

	if (!BsscHasExtJs()) return;

	for (var nElement = gBsOnMouseOuts.length - 1; nElement >= 0; nElement--)

	{

		gBsOnMouseOuts[nElement]();

	}

}

// End of invocation of the event handle functions.



// Add the GereralOnLoad to the onload array.

if (typeof(BsscRegisterOnLoad) != "undefined")

{

	BsscRegisterOnLoad(BsGeneralOnLoad);

}

if (gbBsNS4&&!gbBsNS6) {

	origWidth = innerWidth;

	origHeight = innerHeight;

	onresize = BsReDo;

}

//End to support previous generic parameters



//Begin to support previous HHActiveX invoking

function BsHHActivateComponents()

{

	if( HH_ActiveX && (HH_ChmFilename != "") && ((self == top) || (self == top.frames[0])))

	{

		var objBody = getElementsByTag(document,"BODY")[0];

		if( typeof(objBody) == "object" )

		{

			insertAdjacentHTML(objBody, "beforeEnd", '<OBJECT ID="HHComponentActivator" CLASSID="CLSID:399CB6C4-7312-11D2-B4D9-00105A0422DF" width=0 height=0></OBJECT>');

			if (HHComponentActivator.object)

				HHComponentActivator.Activate(HH_ChmFilename, HH_WindowName, HH_GlossaryFont, HH_Glossary, HH_Avenue);

		}

	}

}



function BsHHActivXOnLoad()

{	

	if( gbBsIE4 )

		BsHHActivateComponents(); 

}



if( typeof(BsscRegisterOnLoad) != "undefined" )

{

	BsscRegisterOnLoad(BsHHActivXOnLoad);

}

//End to support previous HHActiveX invoking



//Begin to support previous relative topics

//If webHelp needs Related Topics DHTMLcode, it's supposed to add it here

var gbPopupMenuTimeoutExpired = false;

var gbInPopupMenu = false;

var gbPopupMenuTopicList = null;

var gOlddocumentClick = null;



//////////////////////////////////////////////////////////////////////////////////////////

//

// Popup Menu code

//

//////////////////////////////////////////////////////////////////////////////////////////



var g_bIsPopupMenuInit = false;

function _WritePopupMenuLayer()

{

	if (!g_bIsPopupMenuInit)

        {

	  if (gbBsNS4&&!gbBsNS6) {

//Do not try to write ininle styles for NS!  NS can not handle it and will not stop downloading the html page...

	   	document.write("<DIV CLASS='WebHelpPopupMenu' ID='PopupMenu'></DIV>");

	  } else{

	  document.write("<DIV ID='PopupMenu' STYLE='position:absolute; left:0px; top:0px; z-index:4; visibility:hidden;'></DIV>");

	  if (!(gbBsNS4&&!gbBsNS6)) {

		document.write("<STYLE TYPE='text/css'>");

		if (gbBsMac&&gbBsIE4) {

			document.write(".PopupOver {font-family:'Arial'; color:white; background:navy; font-size:10pt; font-style:normal;font-weight:normal;text-decoration:none;}");

			document.write(".PopupNotOver {font-family:'Arial'; color:black; background:#c0c0c0; font-size:10pt; font-style:normal;font-weight:normal;text-decoration:none;}");

		} else {

			document.write(".PopupOver {font-family:'Arial'; color:white; background:navy; font-size:8pt; font-style:normal;font-weight:normal;text-decoration:none;}");

			document.write(".PopupNotOver {font-family:'Arial'; color:black; background:#c0c0c0; font-size:8pt; font-style:normal;font-weight:normal;text-decoration:none;}");

		}

		document.write("</STYLE>");

	   }

          }

	  g_bIsPopupMenuInit = true;

	}

}



//Seek for the bsscright frame 

function _SeekFrameByName( cRoot, strName )

{

	if( cRoot == null )	return null;

	if( cRoot.frames == null )	return null;

	if( cRoot.frames[strName] != null )	return cRoot.frames[strName];

	for (var i=0; i<cRoot.frames.length; i++)

	{

		var cObj = null;

		if (!gbBsNS6) 

			cObj = _SeekFrameByName( cRoot.frames(i).document, strName );

		else

			cObj = _SeekFrameByName( cRoot.frames[i], strName );

		if( cObj != null )		return cObj;

	};

	return null;

}

function _GetFrameByName( cRoot, strName )

{

	if( cRoot == null )	return null;

	var cRet = _SeekFrameByName(cRoot, strName);

	if( cRet != null )	return cRet;

	if (cRoot.parent != cRoot)

		return _GetFrameByName( cRoot.parent, strName );

	else

		return null;

}



var gfn_arguments = null;

function _PopupMenu_Invoke(fn_arguments)

{

	gfn_arguments = fn_arguments;

	if (gbBsOpera6&&gbBsMac)

	{

		var wndOldPopupLinks= window.open(document.location.href, "popuplinks");

		wndOldPopupLinks.close();

		setTimeout("_PopupMenu_Invoke_2();",100);

	}

	else

	{

		_PopupMenu_Invoke_2();

	}

}



function GetXOffset(el) {

    var offX = 0;

    while (el && typeof (el.offsetLeft) != 'undefined' && typeof (el.offsetParent) != 'undefined') 

    {

        offX = offX + el.offsetLeft;

        el = el.offsetParent;

    }

    return offX;

}



function GetYOffset(el) 

{

    var offY = 0;

    while (el && typeof (el.offsetTop) != 'undefined' && typeof (el.offsetParent) != 'undefined') 

    {

        offY = offY + el.offsetTop;

        el = el.offsetParent;

    }

    return offY;

}



function _PopupMenu_Invoke_2()

{

	var fn_arguments = gfn_arguments;

	gfn_arguments = null;

	

	// Make sure we have reasonable arguments

	var argLen = fn_arguments.length;

	if (argLen < 3) {

		return false;

	}



	// Check to see if we only have one target

	var strTarget = "";

	var targetDoc = null;

	if (fn_arguments[1] == '') {

		if (BSSCPopup_IsPopup()) {

			targetDoc = parent;

			strTarget = "TARGET= _parent";

		}

		else

			targetDoc = window.document;

	} else {

		targetDoc = _GetFrameByName( parent, fn_arguments[1] );



		strTarget = "TARGET='" + fn_arguments[1] + "'";

	}



	if ((!gbBsIE4 && !gbBsNS4 && !gbBsOpera7 && !gbBsKonqueror3 &&!gbBsSafari) || ((gbBsMac) && (gbBsIE4) && (window.event.srcElement.tagName == "AREA"))) {

	

		var argLen 	= fn_arguments.length;



		// Create the window that the hyperlinks will go into

		var nHeight = argLen * 15;

		var nWidth = 400;

		var strParam = "titlebar=no,toolbar=no,status=no,location=no,menubar=no,resizable=yes,scrollbars=auto";

		strParam += ",height=" + nHeight + ",width=200";

		strParam += ",resizable";



		var wndTemp=null;

		// Create a temporary window first to ensure the real popup comes up on top

		if (!gbBsOpera)

			wndTemp = window.open("", "temp", strParam);



		// Create the real popup window

		var wndPopupLinks=null;

		if (gbBsOpera&&gbBsMac)

		{

			wndTemp = window.open(document.location.href, "temp", strParam);

			wndPopupLinks= window.open(document.location.href, "popuplinks", strParam);

		}

		else

			wndPopupLinks= window.open("", "popuplinks", strParam);

		wndPopupLinks.document.open("text/html");



		// Close the temporary

		if (wndTemp)

			wndTemp.close();



		var sHTML="<html><head>";

		sHTML += "<";

		sHTML += "/head>";

		sHTML+="<body onBlur=\'self.focus();\'>";

		var strParaLine = "";

		for (var i = 0; i < (argLen - 2) / 2; i++) {

			strParaLine = "";

			strParaLine += "<a href=\"javascript:";

			if (gbBsIE) {

				strParaLine += "onBlur=null; ";

			}

			strParaLine += "opener.location=\'";

			strParaLine += fn_arguments[2 * i + 3];

			strParaLine += "\';close();\"";

			strParaLine += strTarget;



			strParaLine += ">";

			strParaLine += fn_arguments[2 * i + 2];

			strParaLine += "</a>";

			strParaLine += "<br>";

			sHTML+=strParaLine;

		}

		sHTML+="</body></html>";

		wndPopupLinks.document.write(sHTML);

		wndPopupLinks.document.close();

		window.gbInPopupMenu = true;

		if (!gbBsIE) {

			wndPopupLinks.focus();

		}

		return false;

	}



	if (((argLen < 5) && ((isNaN(fn_arguments[2])) || (gbPopupMenuTopicList == null))) ||

		((argLen < 4) && ((!isNaN(fn_arguments[2])) && (gbPopupMenuTopicList != null)))) {

		// Get the place that we will be putting the topic into

		var strURL = "";

		if (isNaN(fn_arguments[2]) ||  (gbPopupMenuTopicList == null)) {

			strURL = fn_arguments[3];

		}

		else 	{

			strURL = gbPopupMenuTopicList[fn_arguments[2]].strURL;

		}



		if (targetDoc != null) {

			targetDoc.location.href = strURL;

		}

		else {

			if (fn_arguments[1] != null && typeof(fn_arguments[1]) != "undefined")

				window.open(strURL, fn_arguments[1]);

			else

				window.open(strURL);

		}		

		window.gbInPopupMenu = true;

		return false;

	}

	

	var strMenu = "";

	if (gbBsNS4&&!gbBsNS6) {

		strMenu = '<TABLE BORDER="1" CELLSPACING=0 CELLPADDING=3 BGCOLOR="#c0c0c0">';

	} else {

		strMenu = '<TABLE STYLE="border:2px outset white;" CELLSPACING=0';

		if (gbBsMac) {

			strMenu += ' CELLPADDING=4';

		} else {

			strMenu += ' CELLPADDING=2';

		}	

		strMenu += ' BGCOLOR=#c0c0c0>';

	}

	// Add each of the items

	var i = 2;

	while (i <= argLen - 1) {

		strMenu += '<TR><TD><NOBR>'

		// If the destination is a number then look it up in the topic list

		if (isNaN(fn_arguments[i]) ||  (gbPopupMenuTopicList == null)) {

			strMenu += '<DIV class="PopupNotOver" STYLE="padding-left:3pt; padding-right:3pt;"><A HREF="' + fn_arguments[i + 1] + '"' + strTarget;

		} else {

			strMenu += '<DIV class="PopupNotOver" STYLE="padding-left:3pt; padding-right:3pt;"><A HREF="' + gbPopupMenuTopicList[fn_arguments[i]].strURL + '"' + strTarget;

		}

		strMenu += ' onclick="PopupMenu_HandleClick(event);"';

		strMenu += ' onmouseover="PopupMenu_Over(event);"';

		strMenu += ' onmouseout="PopupMenu_Out(event);"';

		strMenu += '>';

		if (isNaN(fn_arguments[i]) || (gbPopupMenuTopicList == null)) {

			strMenu += '<SPAN CLASS="PopupNotOver">' + fn_arguments[i] + '</SPAN>';

		} else {

			strMenu += '<SPAN CLASS="PopupNotOver">' + gbPopupMenuTopicList[fn_arguments[i]].strTitle + '</SPAN>';

		}

		strMenu += '</A></DIV></NOBR></TD></TR>';



		if (isNaN(fn_arguments[i]) || (gbPopupMenuTopicList == null)) {

			i += 2;

		} else {

			i += 1;

		}

	}

	strMenu += "</TABLE>";



	if (gbBsMac) {

	// totally hack. because ie5 in mac need something. </TABLE> is one of them. mac is mad.

		strMenu +="<TABLE></TABLE>";

	}



	var layerPopup = null;

	var stylePopup = null;

	var nEventX = 0;

	var nEventY = 0;

	var nWindowWidth = 0;



	var nPopupHeight = 0;

	var nPopupWidth = 0;



	var e = fn_arguments[0];

	if (typeof (window.event) != 'undefined' && typeof (window.event.clientX) != 'undefined' && typeof (window.event.clientX) == 'number') 

    {

	    nEventX = window.event.clientX;

	    nEventY = window.event.clientY;

	}

	else 

    {

        if (typeof (e.clientX) != 'undefined') 

        {

	        nEventX = e.clientX;

	        nEventY = e.clientY;

	    }

	    else if (typeof (e.pageX) != 'undefined') 

        {

	        nEventX = e.pageX;

	        nEventY = e.pageY;



	        nEventX -= getScrollLeft();

	        nEventY -= getScrollTop();



	    }

	}



	_BSPSGetClientSize();



	var bFoundBrowser = true;

	if (gbBsIE4 || gbBsOpera7) 

    {

	    layerPopup = getElement("PopupMenu");

		layerPopup.innerHTML = strMenu;

		stylePopup = layerPopup.style;

	    nPopupHeight = layerPopup.scrollHeight;

	    nPopupWidth = layerPopup.scrollWidth;

	    if (gbBsMac) 

        {

	        nPopupWidth = 80; // we have no idea how to get the dynamic width of the popup.

	    }

	}

	else if (gbBsNS6 || gbBsKonqueror3 || gbBsSafari) 

    {

	    layerPopup = getElement("PopupMenu");

		layerPopup.style.visibility = "hidden";

		layerPopup.innerHTML = strMenu;

	    nPopupHeight = layerPopup.offsetHeight;

	    nPopupWidth = layerPopup.offsetWidth;

	}

	else if (gbBsNS4) 

    {

	    layerPopup = document.layers.PopupMenu;

	    layerPopup.visibility = "hide";

	    stylePopup = layerPopup.document;

	    stylePopup.write(strMenu);

	    stylePopup.close();



	    nPopupHeight = layerPopup.clip.height;

	    nPopupWidth = layerPopup.clip.width;

	}

	else

	    bFoundBrowser = false;



	if (bFoundBrowser)

    {

	    if (nEventY + nPopupHeight + 20 < gBsClientHeight) 

        {

	        nEventY += 20;

	    }

	    else 

        {

            nEventY = gBsClientHeight - nPopupHeight - 20;

	    }



        if (nEventX + nPopupWidth + 20 < gBsClientWidth) 

        {

            nEventX += 20;

        }

        else 

        {

            nEventX = gBsClientWidth - nPopupWidth - 20;

        }



        var par = layerPopup.offsetParent;

        var offX = 0, offY = 0;

        if (typeof(par) != 'undefined' && par) 

        {

            offX = GetXOffset(par);

            offY = GetYOffset(par);

        }



        nEventX += getScrollLeftElement(par);

        nEventX -= offX;

        nEventY += getScrollTopElement(par);

        nEventY -= offY;

    }



	if (gbBsIE4 || gbBsOpera7) 

    {

	    stylePopup.top = nEventY;

	    if (typeof (stylePopup.top) != 'number' ) 

        {

	        stylePopup.top = nEventY + "px";

	    }

	    stylePopup.left = nEventX;

	    if (typeof (stylePopup.left) != 'number' ) 

        {

	        stylePopup.left = nEventX + "px";

	    }



	    stylePopup.visibility = "visible";

	    if (!gOlddocumentClick && document.onclick)

	        gOlddocumentClick = document.onclick;

	    document.onclick = PopupMenu_HandleClick;

	}

	else if (gbBsNS6 || gbBsKonqueror3 || gbBsSafari) 

    {

	    if (gbBsNS6 || gbChrome || gbSafari3)

	        layerPopup.style.top = nEventY + "px";

	    else

	        layerPopup.style.top = nEventY;

	    if (gbBsNS6 || gbChrome || gbSafari3)

	        layerPopup.style.left = nEventX + "px";

	    else

	        layerPopup.style.left = nEventX;

	    // set again to avoid the stupid frash in netscape 6.

	    layerPopup.innerHTML = strMenu;

	    layerPopup.style.visibility = "visible";

	    //window.captureEvents(Event.MOUSEDOWN);

	    if (!gOlddocumentClick && document.onclick)

	        gOlddocumentClick = document.onclick;

	    window.onclick = PopupMenu_HandleClick;

	}

	else if (gbBsNS4) 

    {

	    layerPopup.left = nEventX;

	    layerPopup.top = nEventY;

	    layerPopup.visibility = "visible";

	    window.captureEvents(Event.MOUSEDOWN);

	    if (!gOlddocumentClick && document.onmousedown)

	        gOlddocumentClick = document.onmousedown;

	    window.onmousedown = PopupMenu_HandleClick;

	}



	if(window.addEventListener)

	{

		var popupDivElem = getElement("PopupMenu");

		if(typeof(popupDivElem) != 'undefined')

			popupDivElem.addEventListener("touchstart", onPopupDivTouched, false);



		window.document.addEventListener("touchstart", onPopupParentTouched, false);

	}

	



	window.gbInPopupMenu = true;

	window.gbPopupMenuTimeoutExpired = false;

	setTimeout("PopupMenu_Timeout();", 100);

	return false;

}



function PopupMenu_Timeout()

{

	window.gbPopupMenuTimeoutExpired = true;

}



function PopupMenu_Over(e)

{

    if (gbBsIE4||gbBsOpera7)

		e.srcElement.className = "PopupOver";

    else if (gbBsNS6)

		e.target.parentNode.className = "PopupOver";

	return;

}



function PopupMenu_Out(e)

{

    if (gbBsIE4||gbBsOpera7)

		e.srcElement.className = "PopupNotOver";

    else if (gbBsNS6)

		e.target.parentNode.className = "PopupNotOver";

	return;

}

function onPopupDivTouched(e)

{

	if(typeof(e) != 'undefined' && e)

		e.stopPropagation();

}



function onPopupParentTouched(e)

{

	if(window.removeEventListener)

	{

		var popupDivElem = getElement("PopupMenu");

		if(typeof(popupDivElem) != 'undefined')

			popupDivElem.removeEventListener("touchstart", onPopupDivTouched, false);

		window.removeEventListener("touchstart", onPopupParentTouched, false);

	}



	PopupMenu_HandleClick(e);

}



function PopupMenu_HandleClick(e)

{

	if (window.gbPopupMenuTimeoutExpired) {

		window.gbInPopupMenu = false;

		if (gbBsNS4 && !gbBsNS6) {

			window.releaseEvents(Event.MOUSEDOWN);

		}



		var layerPopup = null;

		if (gbBsNS4&&!gbBsNS6) {

			layerPopup = document.layers.PopupMenu;

			layerPopup.visibility = "hide";

		} else {

			layerPopup = getElement("PopupMenu");

			layerPopup.style.visibility = "hidden";

		}

	

		if (gOlddocumentClick)

		{

			if (gbBsNS4 && !gbBsNS6)

				document.onmousedown = gOlddocumentClick;

			else

				document.onclick = gOlddocumentClick;

		}

	}

	return;

}



function BSSCPopup_ClickMac()

{

	if ((!DHTMLPopupSupport()) && (gbBsIE4 || gbBsOpera7))

	{	

		var bClickOnAnchor = false;

		var el;

		if ((window.event != null) &&

		    (window.event.srcElement != null))

		{

		    el = window.event.srcElement;

			while (el != null)

			{

				if ((el.tagName == "A") || (el.tagName == "AREA")) 	{

					bClickOnAnchor = true;

					break;

				}

				if (el.tagName == "BODY") {

					break;

				}

				el = getParentNode(el);

			}

		}

		if (BSSCPopup_IsPopup())

		{

			if (!bClickOnAnchor) {

				parent.window.gPopupWindow = null;

				self.close();

			}

		}

		else

		{

			bClosePopupWindow = true;

			if ((bClickOnAnchor) &&

				(el.href) &&

			    ((el.href.indexOf("javascript:BSSCPopup") != -1) || (el.href.indexOf("javascript:null") != -1) || (el.href.indexOf("javascript:void(0)") != -1)))

			{

				bClosePopupWindow = false;

			}

			if (bClosePopupWindow)

			{

				if (window.gPopupWindow != null && !window.gPopupWindow.closed )

				{

					window.gPopupWindow.close();

				}

			}

		}

	}

}



function BsPopupOnClick()

{

	if (!gbBsIE4 && !gbBsOpera7)

		return;



	BSSCPopup_ClickMac();

}



function _BSSCOnError(message)

{

	if(-1 != message.indexOf("denied") 

		|| -1 != message.indexOf("Object required"))

	 return true;

}



//End to support previous relative topics



/// Section End - General and relative topics (JavaScript 1.0)



/// Section Begin  - Popup (JavaScript 1.0)

//Begin to support previous popup functions



//variables used to isolate the browser type

var gBsStyVisShow	= null;

var gBsStyVisHide	= null;

var gBsClientWidth	= 640;

var gBsClientHeight = 480;



// here is the varible for judge popup windows size. these parameter is for IE5.0, it may need adjust for others.

var gBRateH_W		= 0.618; // 1.618 Golden cut.

var gBMaxXOfParent	= 0.8; 

var gBMaxYOfParent	= 0.8;

var gBscrollHeight   = 16;

var gBscrollWidth   =  16;

var gBpermitXDelta	= 3;

var gBpermitYDelta	= 3;





var arrayPopupURL = new Array();

var arrayAbsPopupURL = new Array();

var arrayIntervalId = new Array();



var arrayDirty = new Array();



function getBRateH_W()

{

	return 0.618 ;

}



function getBscrollWidth()

{

	return 16 ;

}



function getBscrollHeight()

{

	return 16 ;

}



function getBMaxXOfParent()

{

	return 0.8 ;

}



function getBMaxYOfParent()

{

	return 0.8 ;

}



function setIntervalID(nIndex,id)

{

    arrayIntervalId[nIndex] = id;

}



function getIntervalID(nIndex)

{

	if (nIndex == -1 || arrayIntervalId.length <= nIndex) 

	    return -1;

	else

        return arrayIntervalId[nIndex];

}



function setAbsPopupURL(nIndex, strURL)

{

	arrayAbsPopupURL[nIndex] = strURL;

}



function getAbsPopupURL(nIndex)

{

	if (nIndex == -1 || arrayAbsPopupURL.length <= nIndex) return null;

	else 

		return arrayAbsPopupURL[nIndex];

}



function getPopupURL(nIndex)

{

	if (nIndex == -1 || arrayPopupURL.length <= nIndex) return null;

	else 

		return arrayPopupURL[nIndex];

}



function getPopupID(nIndex)

{

	return gstrPopupID + nIndex;

}



function getPopupShadowID(nIndex)

{

	return gstrPopupShadowID + nIndex;

}



function getPopupTopicID(nIndex)

{

	return gstrPopupTopicID + nIndex;

}



function getPopupIFrameID(nIndex)

{

	return gstrPopupIFrameID + nIndex;

}



function getPopupIFrameName(nIndex)

{

	return gstrPopupIFrameName + nIndex;

}





function getPopupTopicStyle(nIndex)

{

	return getElement(getPopupTopicID(nIndex)).style;

}



function getPopupShadowStyle(nIndex)

{

	return getElement(getPopupShadowID(nIndex)).style;

}



function getPopupIFrame(nIndex)

{

	if(gbAIR)

	{

		return window.frames[getPopupIFrameName(nIndex)];

	}

	else

	{

		if (gbBsNS6||gbSafari3)

			return eval("window.frames['" + getPopupIFrameName(nIndex) + "']");

		else

			return eval("document.frames['" + getPopupIFrameName(nIndex) + "']");

	}

}



function getPopupDivStyle(nIndex)

{

	return getElement(getPopupID(nIndex)).style;

}



function getPopupIFrameStyle(nIndex)

{

	return getElement(getPopupIFrameID(nIndex)).style;

}





function findDiv(strURL)

{

	for (var i = 0; i < arrayPopupURL.length; i ++ ) {

		if (arrayPopupURL[i] == strURL) {

			return i;

		}

	}

	return -1;

}



var gnToken = -1;

function takeToken()

{

	gnToken ++;

	if (gnToken > 10000) gnToken = 0;

	return gnToken;

}



function IsValidToken(nToken)

{

	return (gnToken == nToken);

}



function addDiv(strURL)

{

	for (var i = 0; i < arrayPopupURL.length; i ++) {

		if (arrayPopupURL[i] == null) {

			arrayPopupURL[i] = strURL;

			return i;

		}

	}	

	arrayPopupURL[i] = strURL;

	arrayDirty[i] = true;

	return i;

}



function setDirty()

{

	for (var i = 0; i < arrayPopupURL.length; i ++ )

		arrayDirty[i] = true;

}



function IsDirty(nIndex)

{

	if (nIndex == -1)

		return true;

	else 

		if (arrayDirty.length > nIndex) 

			return arrayDirty[nIndex];

		else

			return true;

}



function hideAll()

{

	for (var i = 0; i < arrayPopupURL.length; i ++ )

	{

		getPopupDivStyle(i).visibility = gBsStyVisHide;

		getPopupIFrameStyle(i).visibility = gBsStyVisHide;

		if(gbBsIE)

		    removeThis(document.all(getPopupID(i)));

	}

	if(gbBsIE)

		arrayPopupURL.length = 0;

}



function getCurrentPopupIFrame()

{

	for (var i = 0; i < arrayPopupURL.length; i ++)

		if (getPopupDivStyle(i).visibility == gBsStyVisShow)

			return getPopupIFrame(i);

	return null;

}



function setClear(nIndex)

{

	if (nIndex != -1)

		arrayDirty[nIndex] = false;

}



function _BSSCCreatePopupDiv(strURL)

{

	var nIndex = findDiv(strURL);

	if (nIndex == -1 ) {

		nIndex = addDiv(strURL);

		BsPopup_CreateDiv(nIndex);

	}

	else {

		if (IsDirty(nIndex)) {

			if("object" == typeof(getPopupIFrame(nIndex).document))

				getPopupIFrame(nIndex).document.location.href = strURL;

		}

	}

	return nIndex;

}



//Here is the browser type 

function _BSPSGetBrowserInfo()

{

	if (gbBsNS4&&!gbBsNS6)

	{

		gBsStyVisShow	= "show";

		gBsStyVisHide	= "hide";

	}

	else

	{

		gBsStyVisShow	= "visible";

		gBsStyVisHide	= "hidden";

	}

}



_BSPSGetBrowserInfo();



//Get client size info

function _BSPSGetClientSize()

{

	if( typeof( window.innerWidth ) == 'number' )

	{

		gBsClientWidth	= innerWidth;

		gBsClientHeight = innerHeight;

	}

	else if( document.documentElement && ( document.documentElement.clientWidth || document.documentElement.clientHeight ) )

	{

		gBsClientWidth = document.documentElement.clientWidth;

		gBsClientHeight = document.documentElement.clientHeight;

	} 

	else if( document.body && ( document.body.clientWidth || document.body.clientHeight ) ) 

	{

		gBsClientWidth = document.body.clientWidth;

		gBsClientHeight = document.body.clientHeight;

	}

}



var gstrPopupID = 'BSSCPopup';

var gstrPopupShadowID = 'BSSCPopupShadow';

var gstrPopupTopicID = 'BSSCPopupTopic';

var gstrPopupIFrameID = 'BSSCPopupIFrame';

var gstrPopupIFrameName = 'BSSCPopupIFrameName';



var gstrPopupSecondWindowName = 'BSSCPopup';



var gPopupWindow = null;

var gnPopupClickX = 0;

var gnPopupClickY = 0;



var gnPopupScreenClickX = 0;

var gnPopupScreenClickY = 0;



var gbPopupTimeoutExpired = false;



function DHTMLPopupSupport()

{

	if (((gbBsIE4) && (!gbBsMac))||gbBsOpera7|| gbBsNS7 || gbSafari3||gbAIR) {

		return true;

	}

	return false;

}



function BSSCPopup_IsPopup()

{

	if (DHTMLPopupSupport() && (this.name.indexOf(gstrPopupIFrameName) != -1)) {

		return true;

	} else if ((gbBsNS4 || gbBsIE4 || gbBsOpera7) && (this.name.indexOf(gstrPopupID) != -1)) {

		return true;

	} else {

		return false;

	}

}



// If there is a hyperlink in a popup window, display the hyperlink in

// the original window. (bsscright)

//commenting this as we are opening popup links in its parent

//also in multiscreen bsscright is not the the name of topic frame, relevant only in webhelp

/*if (BSSCPopup_IsPopup() && !gbBsIE4 && !gbBsOpera7) {

document.write("<base target=\"bsscright\">");

}*/



// Local functions.

function BsPopup_CreateDiv(nIndex)

{

	if(!DHTMLPopupSupport())

		return;

	// DO NOT SET Width and height for the div, otherwize it will make IE4 popup do not work when view the topic alone.

	var strPopupDiv = "<DIV ID='" + getPopupID(nIndex) + "' STYLE='position:absolute; top:-100; left:0; z-index:600; visibility:hidden;'>";

	strPopupDiv += "<DIV ID='" + getPopupShadowID(nIndex) + "' STYLE=\"position:absolute;top:0; left:0;  background-color:#C0C0C0;\"></DIV>";

	strPopupDiv += "<DIV ID='" + getPopupTopicID(nIndex) + "' STYLE=\"position:absolute;top:0; left:0;  background-color:#FFFFFF;border:1px #000000 outset;\">";

	strPopupDiv += "<IFRAME title=\"Popup Window\" ID='" + getPopupIFrameID(nIndex) + "' name='" + getPopupIFrameName(nIndex) + "' src = '" + getPopupURL(nIndex) + "' frameborder=0 scrolling=auto></IFRAME>";

	strPopupDiv += "</DIV></DIV>";



	var objBody = getElementsByTag(document, "BODY")[0];

	if( typeof(objBody) != "object" )

		return;



	insertAdjacentHTML(objBody, "beforeEnd", strPopupDiv);

}



function handleLoadNS()

{

	if (this.id)

	{

		var nIndex = parseInt(this.id.substring(gstrPopupIFrameID.length));

		BSSCPopup_PostWork(nIndex);

	}

}



function BSSCPopup_PostWork(nIndex)

{

	getPopupDivStyle(nIndex).visibility = gBsStyVisShow;

	getPopupIFrameStyle(nIndex).visibility =gBsStyVisShow;



	setClear(nIndex);

	window.gbPopupTimeoutExpired = true;



	try{

		BSSCPopup_ChangeTargettoParent(getPopupIFrame(nIndex).document);

		if (gbBsNS6)

			getPopupIFrame(nIndex).document.body.addEventListener("click",BSSCPopupClicked,false);

		else

			getPopupIFrame(nIndex).document.body.onclick = BSSCPopupClicked;

	}catch(e){}



	if (!gbOrignalOnMouseDown && document.onmousedown)

		gbOrignalOnMouseDown = document.onmousedown;



	if (gbChrome || gbBsNS6)

		document.addEventListener("mousedown", BSSCPopupParentClicked,false);

	else

		document.onmousedown = BSSCPopupParentClicked;

}



function BSSCPopup_Timeout(nIndex, nToken)

{

    if (!IsValidToken(nToken)) return;



	if (gbBsNS6||((getPopupIFrame(nIndex).document.readyState == "complete") &&

		(getPopupIFrame(nIndex).document.body != null))) {

		BSSCPopup_PostWork(nIndex);

	} else {

		setTimeout("BSSCPopup_Timeout(" + nIndex + "," + nToken + ")", 100);

	}

}



// VH 08/10/00 

// do not change target to parent if the href is using javascript

function BSSCPopup_ChangeTargettoParent(tagsObject)

{

	var collA = getElementsByTag(tagsObject, "A");

	BSSCPopup_ChangeTargettoParent2(collA);



	var collIMG = getElementsByTag(tagsObject,"IMG");

	BSSCPopup_ChangeTargettoParent2(collIMG);

}



function BSSCPopup_ChangeTargettoParent2(colls)

{

	if (colls != null)  {

		for (var j = 0; j < colls.length; j ++ )

		{

			var strtemp = colls[j].href;

			if (strtemp)

			{

				strtemp = strtemp.toLowerCase();

				if (strtemp.indexOf("javascript:") == -1)

				if (colls[j].target == "")

					colls[j].target = "_parent";

			}

		}

	}

}



function BSPSPopupTopicWinHelp(strURL)

{

	_BSSCPopup(strURL);

	return;

}



function DelayBSSCPopup_AfterLoad(nIndex ,nToken ,cuswidth ,cusheight )

{

//before doing any thing clear the interval function

    var intervalID = getIntervalID(nIndex);

    if(intervalID!=-1)

        clearInterval(intervalID);

        

    BSSCPopup_AfterLoad(nIndex ,nToken ,cuswidth ,cusheight );

}



function _BSSCPopup(strURL, width, height)

{

	var cuswidth = 0;

	var cusheight = 0;

	if ("undefined" != typeof(width) && "undefined" != typeof(height)) {

		cuswidth = width;

		cusheight= height;

	}

	

	if (DHTMLPopupSupport()) {

		if(!gbAIR && !gbInsideCHM)

			rhPopupEx.createPopup(strURL, width, height);

		else 

		{	

			var nToken = takeToken(); // take  token first.

			var nIndex = _BSSCCreatePopupDiv(strURL, nToken, cuswidth, cusheight);

			window.gbPopupTimeoutExpired = false;

			var ntWidth = gBsClientWidth;

			var ntHeight = gBsClientHeight;

			_BSPSGetClientSize();

			if (ntWidth != gBsClientWidth || ntHeight != gBsClientHeight) {

				setDirty();

			}

	

			if (IsDirty(nIndex)) 

			{

				if(gbAIR)

				{

				    var tempappTimer = setInterval(function(){DelayBSSCPopup_AfterLoad(nIndex ,nToken ,cuswidth ,cusheight )}, 400);

				    setIntervalID(nIndex,tempappTimer);

				}

				else

				{

					if (gbBsMac) {

						setTimeout("BSSCPopup_AfterLoad(" + nIndex + "," + nToken + "," + cuswidth + "," + cusheight  +")", 400);

					} else {

						setTimeout("BSSCPopup_AfterLoad(" + nIndex + "," + nToken + "," + cuswidth + "," + cusheight + ")", 100);

					}

				}

			}

			else {

				MoveDivAndShow(nIndex ,nToken, cuswidth, cusheight);

			}

		}

	} else {

		_BSSCPopup2(strURL, cuswidth, cusheight);

	}

	return;

}



if (gbBsIE55)

{

	var ehlpdhtm_fOldBefureUnload = window.onbeforeunload;

	var gnBsUnload=0;

	window.onbeforeunload = window_BUnload;

}

	

function window_BUnload()

{

	gnBsUnload++;

	if (gnBsUnload>1)

		return;

	for (var i = 0; i < arrayPopupURL.length; i ++)

		removeThis(document.all(getPopupID(i)));

	arrayPopupURL.length = 0;	

	if (ehlpdhtm_fOldBefureUnload)

		ehlpdhtm_fOldBefureUnload();

}



function _BSSCPopup2(strURL, width, height)

{

	if (gbBsOpera6&&gbBsMac)

	{

		var wmTemp = window.open(document.location.href, gstrPopupSecondWindowName);

		wmTemp.close();

		setTimeout("_BSSCPopup3(\""+strURL+"\","+width+","+height+");",100);

	}

	else

		_BSSCPopup3(strURL, width, height);

}

		

function _BSSCPopup3(strURL, width, height)

{

	if (window.name == gstrPopupSecondWindowName) {

		window.location = strURL;

	} else {

		if (!gbBsMac || !gbBsNS4) {

			BSSCHidePopupWindow();

		}

		var nX = 0;

		var nY = 0;

		var nHeight = 300;

		var nWidth = 400;

		if (width > 0 && height > 0) {

			nHeight = height;

			nWidth = width;

		}

		_BSPSGetClientSize();



		nX = window.gnPopupScreenClickX;

		nY = window.gnPopupScreenClickY;



		if (nY + nHeight + 40 > screen.availHeight) {

			nY = screen.availHeight - nHeight - 40;

		}

		if (nX + nWidth + 40 > screen.availWidth) {

			nX = screen.availWidth - nWidth - 40;

		}



		// Launch a separate window

		var strParam="titlebar=no,toolbar=no,status=no,location=no,menubar=no,resizable=yes,scrollbars=yes";

		if (gbBsNS) {

			if (gbBsNS6) {

				strParam += ",Height=" + nHeight + "px,Width=" + nWidth+"px";

				strParam += ",screenX=" + nX + ",screenY=" + nY;

				strParam += ",dependent=yes";

			}

			else {

				strParam += ",OuterHeight=" + nHeight + ",OuterWidth=" + nWidth;

				strParam += ",screenX=" + nX + ",screenY=" + nY;

				strParam += ",dependent=yes";

			}

		}

		else {

			strParam += ",height=" + nHeight + ",width=" + nWidth;

			strParam += ",left=" + nX + ",top=" + nY;

		}

		if (gbBsSafari)

		{

			if (window.gPopupWindow)

				window.gPopupWindow.close();		

			window.gPopupWindow = window.open(strURL, "", strParam);

			window.gPopupWindow.name = gstrPopupSecondWindowName;

			window.gPopupWindow.moveTo(nX, nY);

			window.gPopupWindow.document.location.reload();

		}	

		else

		{

			var wmTemp=null;

			if (gbBsKonqueror3)

			{

				if (window.gPopupWindow)

					window.gPopupWindow.close();

			}

			if (gbBsOpera&&gbBsMac)

			{

				wmTemp= window.open(document.location.href, "Temp", strParam);

			}

			window.gPopupWindow = window.open(strURL, gstrPopupSecondWindowName, strParam);

			if (!gbBsIE)

				window.gPopupWindow.focus();

				

			if (wmTemp)

				wmTemp.close();

		}



		if (gbBsNS4)

			setEventHandle();

		else if (gbBsIE4 || gbBsOpera7||gbBsKonqueror3)

			setTimeout("setPopupFocus();", 100);

	}

	return;

}



function setEventHandle()

{

	window.gPopupWindow.captureEvents(Event.CLICK | Event.BLUR);

	window.gPopupWindow.onclick = NonIEPopup_HandleClick;

	window.gPopupWindow.onblur = NonIEPopup_HandleBlur;

}



function setPopupFocus()

{

	window.gPopupWindow.focus();

}



function NonIEPopup_HandleBlur(e)

{

	window.gPopupWindow.focus();

}



function NonIEPopup_HandleClick(e)

{

	// Because navigator will give the event to the handler before the hyperlink, let's

	// first route the event to see if we are clicking on a Popup menu in a popup.

	document.routeEvent(e);



	// If a popup menu is active then don't do anything with the click

	if (window.gPopupWindow.gbInPopupMenu) {

		window.gPopupWindow.captureEvents(Event.CLICK);

		window.gPopupWindow.onclick = NonIEPopup_HandleClick;

		return false;

	}



	// Close the popup window

	if(e.target.href)

	{

		if(e.target.href.indexOf("javascript:")==-1) 

		{

			if (e.target.target=="")

				window.location.href = e.target.href;

			else

				window.open(e.target.href, e.target.target);

			this.close();

		}

	} 

	else

		this.close();

	return false;

}



function BSSCPopup_AfterLoad(nIndex, nToken, cuswidth, cusheight)

{

	if (!window.getPopupIFrame(nIndex).document) {

		_BSSCPopup2(getPopupURL(nIndex), cuswidth, cusheight);

		return;

	}

	

    if (!IsValidToken(nToken)) return;



	if (gbSafari3||gbAIR)

	{

			setAbsPopupURL(nIndex, window.getPopupIFrame(nIndex).document.location.href); // change URL to abs url.

		BSSCPopup_ResizeAfterLoad(nIndex, nToken, cuswidth, cusheight);

		return;

	}

	

	if (gbBsNS6)

	{

		setAbsPopupURL(nIndex, window.getPopupIFrame(nIndex).document.location.href); // change URL to abs url.

		setTimeout("BSSCPopup_ResizeAfterLoad(" + nIndex + "," + nToken + "," + cuswidth + "," + cusheight + ")", 200);

		return;

	}

	

	if ((window.getPopupIFrame(nIndex).document.readyState == "complete") &&

		(window.getPopupIFrame(nIndex).document.body != null)) {

			if (window.getPopupIFrame(nIndex).document.location.href.indexOf("about:blank") != -1) { // add this check. IE will use about:blank" as the default vaule for Iframe.

				window.getPopupIFrame(nIndex).document.location = getPopupURL(nIndex);

				setTimeout("BSSCPopup_AfterLoad(" + nIndex + "," + nToken + "," + cuswidth + "," + cusheight + ")", 200);

			}

			else

				{

					setAbsPopupURL(nIndex, window.getPopupIFrame(nIndex).document.location.href); // change URL to abs url.

					BSSCPopup_ResizeAfterLoad(nIndex, nToken, cuswidth, cusheight);

				}

	} else {

		setTimeout("BSSCPopup_AfterLoad(" + nIndex + "," + nToken + "," + cuswidth + "," + cusheight + ")", 200);

	}

}



function BSSCPopup_ResizeAfterLoad(nIndex, nToken, cuswidth, cusheight)

{

	if (window.gbPopupTimeoutExpired) return;



    if (!IsValidToken(nToken)) return;



	getPopupDivStyle(nIndex).visibility = gBsStyVisHide;

	getPopupIFrameStyle(nIndex).visibility = gBsStyVisHide;

	if(gbBsIE)

	{

	    //fix for Popup Blank issue

	    getPopupIFrameStyle(nIndex).visibility = gBsStyVisShow;

		getPopupDivStyle(nIndex).visibility = gBsStyVisShow;

	}



	// Determine the width and height for the window

	_BSPSGetClientSize();



	var size = new BSSCSize(0, 0);



	if (cuswidth <= 0 || cusheight <= 0)

				BSSCGetContentSize(window.getPopupIFrame(nIndex), size);

			else {

		size.x = cuswidth;

		size.y = cusheight;

	}



	// Determine the width and height for the window

	var nWidth = size.x;

	var nHeight = size.y;



	// for small popup size, we should allow any size.

	// The popup size should be ok if bigger than 0

	if (nWidth < 0 || nHeight < 0) return; 	// there must be something terribly wrong.		

	

	//make the width and height same for all the browsers now

	nWidth = nWidth + 22;

	nHeight = nHeight + 10;

	

	getPopupDivStyle(nIndex).width = nWidth+ "px" ;

	getPopupDivStyle(nIndex).height = nHeight+ "px" ;

	

	getPopupShadowStyle(nIndex).width = nWidth + "px" ;

	getPopupShadowStyle(nIndex).height = nHeight + "px" ;

	

	

    	getPopupTopicStyle(nIndex).width = nWidth + "px" ;

	getPopupTopicStyle(nIndex).height = nHeight + "px" ;

	

	getPopupIFrameStyle(nIndex).width = nWidth + "px" ;

	getPopupIFrameStyle(nIndex).height = nHeight + "px" ;

		

	if (gbBsIE55 || gbBsNS6 || gbSafari3||gbAIR)

	{

		getPopupIFrameStyle(nIndex).top = 0;

		getPopupIFrameStyle(nIndex).left = 0;

	}

	

	var strURL = getPopupURL(nIndex);

	if (strURL.indexOf("#") != -1&&gbBsNS6)

		getPopupIFrame(nIndex).location.reload();

	else if (strURL.indexOf("#") != -1||gbBsNS6)

		getPopupIFrame(nIndex).location.href = strURL;  // reload again, this will fix the bookmark misunderstand in IE5.

		

	MoveDivAndShow(nIndex, nToken, cuswidth, cusheight);

}



function getScrollLeft()

{

	if( typeof( window.pageXOffset) == 'number' ) 

		return window.pageXOffset ;

	else if( document.body && ( document.body.scrollLeft || document.body.scrollTop ) ) 

		return document.body.scrollLeft ;

	else if( document.documentElement && document.documentElement.scrollLeft  ) 

		return document.documentElement.scrollLeft;

	else

		return 0 ;	

}



function getScrollTop()

{

	if( typeof( window.pageYOffset) == 'number' ) 

		return window.pageYOffset ;

	else if( document.body && document.body.scrollTop ) 

		return document.body.scrollTop ;

	else if( document.documentElement && document.documentElement.scrollTop  ) 

		return document.documentElement.scrollTop;

	else

		return 0 ;	

}



function getScrollLeftElement(el) 

{

    var x = 0;

    while (el && typeof (el.scrollLeft) == 'number') 

    {

        if (el == document.body) 

        {

            var top = document.body.scrollLeft || document.documentElement.scrollLeft;

            x += top;

        }

        else

            x += el.scrollLeft;

        el = el.offsetParent;

    }

    return x;

}



function getScrollTopElement(el) 

{

    var x = 0;

    while (el && typeof (el.scrollTop) == 'number') 

    {

        if (el == document.body) 

        {

            var top = document.body.scrollTop || document.documentElement.scrollTop;

            x += top;

        }

        else

            x += el.scrollTop;

        el = el.offsetParent;

    }

    return x;

}





function MoveDivAndShow(nIndex, nToken, cuswidth, cusheight)

{

	if (window.getPopupIFrame(nIndex).document.location.href != getAbsPopupURL(nIndex)) { // if redirect, reload again.

			window.getPopupIFrame(nIndex).document.location = getPopupURL(nIndex);

			if(gbAIR)

			{

				BSSCPopup_AfterLoad(nIndex ,nToken ,cuswidth ,cusheight );

			}

			else

				setTimeout("BSSCPopup_AfterLoad(" + nIndex + "," + nToken + "," + cuswidth + "," + cusheight + ")", 200);

			return;

	}



	// Determine the position of the window

	var nClickX = window.gnPopupClickX;

	var nClickY = window.gnPopupClickY;

	var nTop = 0;

	var nLeft = 0;

	

	var nWidth = parseInt(getPopupDivStyle(nIndex).width);

	var nHeight = parseInt(getPopupDivStyle(nIndex).height);

	

	if (nClickY + nHeight + 20 < gBsClientHeight + getScrollTop()) {

		nTop = nClickY + 10;

	} else {

		nTop = (getScrollTop() + gBsClientHeight) - nHeight - 20;

	}

	if (nClickX + nWidth < gBsClientWidth + getScrollLeft()) {

		nLeft = nClickX;

	} else {

		nLeft = (getScrollLeft() + gBsClientWidth) - nWidth - 20;

	}



	if(!gbBsIE55)

	{

		if (nTop < getScrollTop()) nTop  = getScrollTop() + nTop;

		if (nLeft< getScrollLeft())  nLeft = getScrollLeft() + nLeft;

		

		if(nTop+nHeight>gBsClientHeight + getScrollTop())

		{

			nTop = (getScrollTop() + gBsClientHeight) - nHeight - 20;

		}

	}

    

   	if (isNaN(nLeft))

		getPopupDivStyle(nIndex).left = nClickX + "px";	

	else

		getPopupDivStyle(nIndex).left = nLeft+ "px";	

	

	if (isNaN(nTop))

		getPopupDivStyle(nIndex).top = nClickY  + "px";

	else

		getPopupDivStyle(nIndex).top = nTop + "px";



	// Set the location of the background blocks

	getPopupShadowStyle(nIndex).left = 6 + "px";

	getPopupShadowStyle(nIndex).top = 6 + "px";

	if (gbBsIE55)

	{

		getPopupShadowStyle(nIndex).left = 4;

		getPopupShadowStyle(nIndex).top = 4;

	}

	

	if (gbBsMac&&gbBsIE4) {

		// Total hack on the iMac to get the IFrame to position properly

		getPopupIFrameStyle(nIndex).pixelLeft = 100;

		getPopupIFrameStyle(nIndex).pixelLeft = 0;

		// Explicitly call BSSCOnLoad because the Mac doesn't seem to do it

		getPopupIFrame(nIndex).window.BSSCOnLoad();

	}



	if(gbChrome)

	{

		BSSCPopup_PostWork(nIndex);	

	}

	else if (gbBsNS6&&IsDirty(nIndex))

		getElement(getPopupIFrameID(nIndex)).addEventListener("load", handleLoadNS, false);

	else

		BSSCPopup_Timeout(nIndex , nToken );

	return;

}



function	BSSCSize(x, y)

{

	this.x = x;

	this.y = y;

}



function BSSCGetContentSize(thisWindow, size)

{

	if (!gbBsIE4 && !gbBsOpera7 && !gbBsNS4 && !gbSafari3 && !gbAIR)

		return;





	if ((gbBsMac&&gbBsIE4)||gbBsOpera7) {

		size.x = 320;

		size.y = 180;

		return;

	}



	// Resize the width until it is wide enough to handle the content

	// The trick is to start wide and determine when the scrollHeight changes

	// because then we know a scrollbar is necessary. We can then go back

	// to the next widest size (for no scrollbar)



	var ClientRate = gBsClientHeight / gBsClientWidth;



	

	var GoldenSize = new BSSCSize(0,0);

	GoldenSize.x = gBsClientWidth * getBMaxXOfParent();

	GoldenSize.y = gBsClientHeight *getBMaxYOfParent() ;



	if (ClientRate > gBRateH_W) {

		GoldenSize.y = GoldenSize.x * gBRateH_W;

	}

	else {

		GoldenSize.x = GoldenSize.y / gBRateH_W;

	}



	// Try to using parent specified max x.

	var x = 0;

	var maxgoldx = GoldenSize.x;

	var maxx = gBsClientWidth * getBMaxXOfParent();

	

	// This double resize causes the document to re-render (and we need it to)

	if (!gbBsIE5 && !gbChrome && !gbAIR)

		thisWindow.moveTo(10000,10000); // this is used to fix the flash on IE4.

	if(!gbAIR)

	{

	thisWindow.resizeTo(1, 1);

	thisWindow.resizeTo(maxgoldx, getScrollHeight(thisWindow) + getBscrollHeight());

	}

		

	var miny = getScrollHeight(thisWindow) + getBscrollHeight();

	

	if (miny > GoldenSize.y) // the popup does not fix in the parent wanted golden area. so try to expand itself as large as it can

	{

		if(gbBsIE55)

		{

			thisWindow.resizeTo(maxx , getScrollHeight(thisWindow) + getBscrollHeight());

		}

		

		miny = 	getScrollHeight(thisWindow) + getBscrollHeight();

		maxy = gBsClientHeight * getBMaxYOfParent();

		

		if (miny > maxy) { // the popup must have a scroll, OK let it be.

			miny = maxy;

			size.x = maxx;

			size.y = maxy;

			thisWindow.document.body.scroll = 'yes'; // At this time we do want to show scroll any more. so it will looks better a little.

		}

		else { // popup still can fit in the parent area by someway. now we choose the same h/w rate as parent.

			size.y = miny;

			

			//  downsize from maxx , now I try to using binary divide.

			x = maxx;

			deltax = -maxx/2;

			//j = 0;

			while (true) {

				x = x + deltax;

				if(!gbAIR)

				thisWindow.resizeTo(x, miny);

				diffy = getScrollHeight(thisWindow) + getBscrollHeight() - x * ClientRate;

				if (diffy >  gBpermitYDelta ) // it is higher than wanted, so x need to be wide a little bitter

					deltax = Math.abs(deltax) /2;

				else if (diffy <  -gBpermitYDelta) // it is shorter than wanted, so x need to be narrow a little bitter

					deltax = -Math.abs(deltax) /2;

				else 

					// the y is close enough to wanted.

					break;

				if (Math.abs(deltax) < gBpermitXDelta) // the next change is too slight and it can be ignore.

					break;

			}

			size.x = getScrollWidth(thisWindow); //+ gBscrollWidth;

			size.y = getScrollHeight(thisWindow);// + gBscrollHeight;	

			thisWindow.document.body.scroll = 'no';

		}

	}

	else {

		if (getScrollWidth(thisWindow) > maxgoldx) {

			size.x = maxx; 

			size.y = miny;	

			thisWindow.document.body.scroll = 'yes';

		}

		else {

			//  downsize from maxgoldx , now I try to using binary divide.			

			x = maxgoldx;

			deltax = -maxgoldx/2;

			while (true) {

				x = x + deltax;

				if(!gbAIR)

				thisWindow.resizeTo(x, miny);

				diffy = getScrollHeight(thisWindow) + getBscrollHeight() - x * getBRateH_W();

				if (diffy >  gBpermitYDelta ) // it is higher than wanted, so x need to be wide a little bitter

					deltax = Math.abs(deltax) /2;

				else if (diffy <  -gBpermitYDelta) // it is shorter than wanted, so x need to be narrow a little bitter

					deltax = -Math.abs(deltax) /2;

				else 

					// the y is close enough to wanted.

					break;

				if (Math.abs(deltax) < gBpermitXDelta) // the next change is too slight and it can be ignore.

					break;

			}

			size.x = getScrollWidth(thisWindow);

			size.y = getScrollHeight(thisWindow) ;

			thisWindow.document.body.scroll = 'no'; // At this time we do not want to show scroll any more. so it will looks better a little.



		}

	}

	if (gbBsNS6)

		size.y = size.y + 20 ;	

	

	if(!gbAIR)

	thisWindow.resizeTo(size.x, size.y);

	return;

}



function getScrollWidth(thisWindow)

{

   var w =  thisWindow.document.body.scrollWidth ? thisWindow.document.body.scrollWidth : thisWindow.window.pageXOffset  ; 

   return w ? w : 0;

} 



function getScrollHeight(thisWindow)

{

   var h = thisWindow.document.body.scrollHeight ? thisWindow.document.body.scrollHeight : thisWindow.window.pageYOffset  ; 

   return h ? h : 0;

}





function BSSCPopupParentClicked()

{

	if (!window.gbPopupTimeoutExpired) {

		return false;

	}

	

	document.onmousedown = gbOrignalOnMouseDown;



	// Simply hide the popup

	hideAll();



	window.gbPopupTimeoutExpired = false;



	return true;

}



function isInsideHyperLink(obj)

{

	if (obj&&obj!=getParentNode(obj))

	{

		if (obj.tagName=="A"||obj.tagName=="IMG" || obj.tagName=="VIDEO")

			return true;

		else

			return isInsideHyperLink(getParentNode(obj));

	}

	else

		return false;

}



function BSSCPopupClicked(e)

{

	if (!window.gbPopupTimeoutExpired) {

		return false;

	}



	var popupIFrame = getCurrentPopupIFrame();

	if (popupIFrame == null) {

		return true;

	}



	if (gbBsIE4 && (!((popupIFrame.window.event != null) &&

		(popupIFrame.window.event.srcElement != null) &&

		isInsideHyperLink(popupIFrame.window.event.srcElement)))) {

		document.onmousedown = gbOrignalOnMouseDown;

		

		// Simply hide the popup

		hideAll();

		window.gbPopupTimeoutExpired = false;

		return true;

	}

	else if (!gbAIR && (gbBsNS6 || gbChrome) && (!((e != null) &&

			(e.target!= null) && isInsideHyperLink(e.target))))

	{

	    document.removeEventListener("mousedown", BSSCPopupParentClicked,false);

	    if(gbOrignalOnMouseDown)

		    document.addEventListener("mousedown", gbOrignalOnMouseDown,false);

		// Simply hide the popup

		hideAll();

		window.gbPopupTimeoutExpired = false;

		return true;		

	}

}



//trace the mouse over's position for hotspot

function  BSPSPopupOnMouseOver(event)

{

	rhPopupEx.setClickPosition(event.clientX, event.clientY);	

	if (gbBsIE4 || gbBsOpera7||gbBsKonqueror3) {

		window.gnPopupClickX = event.clientX + getScrollLeft();

		window.gnPopupClickY = event.clientY + getScrollTop();

		window.gnPopupScreenClickX = event.screenX;

		window.gnPopupScreenClickY = event.screenY;

	} else if (gbBsSafari) {

		window.gnPopupClickX = event.clientX + getScrollLeft();

		window.gnPopupClickY = event.clientY + getScrollTop();

		window.gnPopupScreenClickX = event.screenX + window.screenX;

		window.gnPopupScreenClickY = event.screenY + window.screenY;

	} else if (gbBsNS4) {

		window.gnPopupClickX = event.pageX - window.pageXOffset;

		window.gnPopupClickY = event.pageY - window.pageYOffset;

		window.gnPopupScreenClickX = event.screenX - window.pageXOffset;

		window.gnPopupScreenClickY = event.screenY - window.pageYOffset;

	}

}



function BSSCHidePopupWindow()

{

	if (window.gPopupWindow != null) {

		if (gbBsNS4) {

			if ((typeof window.gPopupWindow != "undefined") && (!window.gPopupWindow.closed)) {

				window.gPopupWindow.close();

				window.gPopupWindow = null;

			}

		}

	}

	return;

}



// Add the PopupOnClick to the onclick array.

if (typeof(BsscRegisterOnClick) != "undefined")

{

	BsscRegisterOnClick(BsPopupOnClick);

}

//End to support previous popup functions



/// Section End  - Popup (JavaScript 1.0)



/// Section Begin - Embedded Stub (JavaScript 1.0)



function BSSCCreatePopupDiv()

{

	return;

}



function WritePopupMenuLayer()

{

	if (BsscHasExtJs()) {_WritePopupMenuLayer();}

}



function BSSCPopup(strURL, width, height)

{

	var re = new RegExp("'", 'g');

	strURL = strURL.replace(re, "%27");



	if (BsscHasExtJs())	{

		_BSSCPopup(strURL, width, height);

	}else{

		//Create a temporary window first to ensure the real popup comes up on top

		var wndTemp = null;

		if (!gbBsNS3) {

			wndTemp = window.open("", "temp", "titlebar=no,toolbar=no,status=no,location=no,menubar=no,resizable=yes,scrollbars=yes,height=3,width=4");

		}

		// Create the real popup window

		var wndPopup = window.open(strURL, "BSSCPopup", "titlebar=no,toolbar=no,status=no,location=no,menubar=no,resizable=yes,scrollbars=yes,height=300,width=400");

		// Close the temporary

		if (!gbBsNS3) {

			wndTemp.close();

		} else {

			wndPopup.focus();

		}

	}

}



var gbWndTemp = null, gbWndPopupLinks = null;

var gbstrParaTotal = "";



function PopupMenu_Invoke()

{

	if (typeof(wfRelatedTopic) == 'function' && typeof(IsFlashSupported) == 'function')

	{

		if (Number(gsSkinVersion) > 2 && IsFlashSupported())

		{

			return wfRelatedTopic(PopupMenu_Invoke.arguments);

		}

	}

	if (BsscHasExtJs()) {

		return _PopupMenu_Invoke(PopupMenu_Invoke.arguments);

	}

	if (gbBsNS3Before || gbBsIE3Before )	{

		var argLen 	= PopupMenu_Invoke.arguments.length;

		if (argLen < 5) {

			window.document.location.href = PopupMenu_Invoke.arguments[3];

			return false;

		}

		gbWndTemp = null;

		gbWndPopupLinks = null;

		gbstrParaTotal = "";

		for (var i = 0; i < (argLen - 2) / 2; i++) {

			var strParaLine = "";

			if (gbBsNS2){

				strParaLine += "<a href=\"";

				strParaLine += PopupMenu_Invoke.arguments[2 * i + 3];

				strParaLine += "\">"

				strParaLine += PopupMenu_Invoke.arguments[2 * i + 2];

				strParaLine += "</a>";

			} else {

				strParaLine += "<a href=\"javascript:";

				strParaLine += "gotoUrl(\'";

				strParaLine += PopupMenu_Invoke.arguments[2 * i + 3];

				strParaLine += "\');\"";

				if (PopupMenu_Invoke.arguments[1] != '') {

					strParaLine += " TARGET='" + PopupMenu_Invoke.arguments[1] + "'";

				}

				strParaLine += ">";

				strParaLine += PopupMenu_Invoke.arguments[2 * i + 2];

				strParaLine += "</a>";

			}

			strParaLine += "<br>";

			gbstrParaTotal += strParaLine;

		}

		var nHeight = argLen * 15;

		var nWidth = 400;

		var strParam = "titlebar=no,toolbar=no,status=no,location=no,menubar=no,resizable=yes,scrollbars=auto";

		strParam += ",height=" + nHeight + ",width=200,resizable";

		

		//Create a temporary window first to ensure the real popup comes up on top

		//var wndTemp = null;

		if (!gbBsNS3) {

			gbWndTemp = window.open("", "temp", "titlebar=no,toolbar=no,status=no,location=no,menubar=no,resizable=yes,scrollbars=yes,height=3,width=4");

		} 

		gbWndPopupLinks = window.open("", "popuplinks", strParam);



		setTimeout("Wait_PopupMenuReady()", 100);

	}

	return true;

}



function Wait_PopupMenuReady() 

{

	if (gbWndPopupLinks != null && "object" == typeof(gbWndPopupLinks.document)) {

		PopupMenu_InvokeReady();

	}

	else 

		setTimeout("Wait_PopupMenuReady()", 100);

}



function PopupMenu_InvokeReady()

{

	if (gbWndPopupLinks != null) {

		gbWndPopupLinks.document.open("text/html");

		gbWndPopupLinks.document.write("<html><head>");

		if (gbBsNS2) {

			gbWndPopupLinks.document.write("<base href=\"" + location +"\">");

		} else {

			//YJ: IE301,302 and NS3.x works fine

			gbWndPopupLinks.document.write("<");

			gbWndPopupLinks.document.write("script>");

			gbWndPopupLinks.document.write("function gotoUrl(aUrl) {opener.window.location=aUrl; close();}");

			gbWndPopupLinks.document.write("<");

			gbWndPopupLinks.document.write("/script>");

		}

		gbWndPopupLinks.document.write("<");

		gbWndPopupLinks.document.write("/head>");

		gbWndPopupLinks.document.write("<body onBlur=\'self.focus();\'>");

		gbWndPopupLinks.document.write(gbstrParaTotal);

		gbWndPopupLinks.document.write("</body></html>");

		gbWndPopupLinks.document.close();



		// Close the temporary

		if (!gbBsNS3 && gbWndTemp != null) {

			gbWndTemp.close();

		}else {

			gbWndPopupLinks.focus();

		}



		return true;

	}

	return false;

}



/// Section End - Embedded Stub (JavaScript 1.0)



//// Segment End -- (JavaScript 1.0)



//// Segment Begin -- (JavaScript 1.2)

/// Section Begin  - DHTM (JavaScript 1.2)



//Begin to support extended and dropdown text effects.

function IsParagraph(el)

{

	return( el.tagName == "P" || el.tagName.indexOf("H") == 0 ) ? true : false;

}



//Begin to support extended and dropdown text effects.

function kadovIsParagraph(el)

{

	return IsParagraph(el);

}





function InitEachChild(el)

{	

	for(var i=0; i<getChildNodes(el).length; i++)

	{

		var child = getChildNodes(el)[i];

		if( child.tagName == "SCRIPT" || child.tagName == "!" )

			continue;



		if( child.id != "" )

		{

			// to wipe out the onload effects

			if (gbBsIE4&&!gbBsMac)

			{

				var onLoadEffect = getAttribute(child.style, "x-on-pageload" );

				if( (onLoadEffect != null) && (onLoadEffect > "") )

					setAttribute(child.style, "x-on-pageload", "" );

			}

			

			var href = getAttribute(child,"href");

			if( href != null && href > "" && href.indexOf( "BSSCPopup" ) >= 0 )

				FilePopupInit(child.id); // Init for Popup

			else if( child.className == "dropspot" || child.className == "expandspot" || 

					 child.className == "glossterm" )

				TextPopupInit(child.id);// Init for Expanding/Glossary or DropDown text

			else if( child.className == "trigger")

				InitTrigger(child.id);// Init for Trigger

			else

			{

				InitEffects(child.id);// Init for DHTML effects

				CEngine.SetOneTargetInitialState( child.id );

			}

		}

		

		if( (child.tagName == "IMG") && (getAttribute(child,"dynsrc") > "") )

			child.start = "mouseover";// to start a AVI file. fileopen doesn't work



		InitEachChild(child);

	}

}



function kadovInitEachChild(el)

{	

	InitEachChild(el);

}



function RetrieveTextInner(el)

{	

	var x = "";

	if( (!el) || (el.tagName == "!") || (el.tagName == "SCRIPT" ))

		return x;



	if( IsParagraph(el) )

	{

		var strNewID = " ";

		if( el.id != "" )

			strNewID += "id=" + el.id + "_NewSpan ";

		x = "<span" + strNewID + "style='" + el.style.cssText + "'>" + el.innerHTML + "</span>";

	}

	else

	{

		for(var i=0; i<getChildNodes(el).length; i++)

			x += RetrieveTextInner( getChildNodes(el)[i] );

	}

	return x;

}



function kadovRetrieveTextInner(el)

{

	return 	RetrieveTextInner(el);

}



function RetrieveCleanHTML( strRawHTML, strTagOpen, strTagClose, nDistance )

{	

	var nTagOpen = strRawHTML.indexOf( strTagOpen, 0 );

	if( nTagOpen < 0 )

		return strRawHTML;



	var nTagClose = strRawHTML.indexOf( strTagClose, nTagOpen);

	if( nTagClose < nTagOpen )

		return strRawHTML;

		

	if( typeof(nDistance) == "number" && nDistance > 0 )

		if( (nTagClose - nTagOpen) != nDistance )

			return strRawHTML;

		

	var strCleanOnce = strRawHTML.substring(0, nTagOpen) + strRawHTML.substr(nTagClose + strTagClose.length) ;

	return 	RetrieveCleanHTML( strCleanOnce, strTagOpen, strTagClose );

}



function kadovRetrieveCleanHTML( strRawHTML, strTagOpen, strTagClose, nDistance )

{	

	return RetrieveCleanHTML( strRawHTML, strTagOpen, strTagClose, nDistance );

}	



function AdjustObjectTag(strRawHTML, nStartPos)

{// adjust object tag for related topics HTML control, because innerHTML misses out the item settings

	

	//Is there any DTC?

	var strDTCTagOpen = '<!--Metadata type="DesignerControl" startspan';

	var strDTCTagClose = '<!--Metadata type="DesignerControl" endspan-->';

	var nDTCTagOpen = strRawHTML.indexOf( strDTCTagOpen, nStartPos );

	if( nDTCTagOpen < 0 )

		return strRawHTML;

	var nDTCTagClose = strRawHTML.indexOf( strDTCTagClose, nDTCTagOpen );

	if( nDTCTagClose < nDTCTagOpen)

		return strRawHTML; // no Design Time Controls;

		

	//Is the DTC HTML Help Control?

	var strRTObjTagOpen = 'classid=clsid:ADB880A6-D8FF-11CF-9377-00AA003B7A11';

	var strRTObjTagClose = '</OBJECT>';

	var nRTObjTagOpen = strRawHTML.indexOf( strRTObjTagOpen, nDTCTagOpen );

	if( nRTObjTagOpen < nDTCTagOpen )

		return strRawHTML;

	var nRTObjTagClose = strRawHTML.indexOf( strRTObjTagClose, nRTObjTagOpen );

	if( nRTObjTagClose < nRTObjTagOpen )

		return strRawHTML; // is not a HTML help control

		

	// Is it a related Topics html help control?

	var strRTObjLabel = '<PARAM NAME=\"Command\" VALUE=\"Related Topics';

	if( strRawHTML.indexOf(strRTObjLabel, nRTObjTagOpen) < 0 )

		return strRawHTML;

	

	// does the commented object tag contain a items parameters		

	var strRTItemsOpen = '<param name="Items" value="';

	var strRTItemsClose = '$$**$$" >';

	var strRTItemsClose2 = '$$**$$">';



	var nRTItemsOpen = strRawHTML.indexOf(strRTItemsOpen, nDTCTagOpen);

	if( nRTItemsOpen < nDTCTagOpen )

		return strRawHTML;

	var nRTItemsClose = strRawHTML.indexOf(strRTItemsClose, nRTItemsOpen);

	if (nRTItemsClose == -1)

		nRTItemsClose = strRawHTML.indexOf(strRTItemsClose2, nRTItemsOpen);

	if( nRTItemsClose < nRTItemsOpen )

		return strRawHTML;

		

	// found a items string

	var strItems = strRawHTML.substring( nRTItemsOpen + strRTItemsOpen.length, nRTItemsClose);

	if( strItems.length < 1 )

		return strRawHTML;

	

	// to reconstruct the item(s) param tag(s)

	var strItemsArray = strItems.split('$$**$$');

	if( strItemsArray.length < 1 )

		return strRawHTML;

	var strRunTimeItemParam = "";

	for( var i = 0; i < strItemsArray.length; i++ )

	{

		strRunTimeItemParam += '<PARAM  NAME="Item' + (i+1);

		strRunTimeItemParam += '"' + '  VALUE="';

		strRunTimeItemParam += strItemsArray[i];

		strRunTimeItemParam += '">';

	}

	

	// to insert the reconstructed item params into runtime object tag

	var strAdjustedHTML = strRawHTML.substring(0,nRTObjTagClose) + strRunTimeItemParam + strRawHTML.substring(nRTObjTagClose, strRawHTML.length);

	return AdjustObjectTag(strAdjustedHTML, nDTCTagClose + strDTCTagClose.length);

}



function kadovAdjustObjectTag(strRawHTML, nStartPos)

{// adjust object tag for related topics HTML control, because innerHTML misses out the item settings

 return AdjustObjectTag(strRawHTML, nStartPos);

}



function TextPopupOnLoad( el )

{

	if( typeof(el) == "string" )

		el = getElement(el);

	var src = null;

	if(el.id)

	{

		for (var i=0;i<gPopupData.length;i++)

			if (gPopupData[i].el==el.id)

			{

				src=gPopupData[i].popupId;

				break;

			}

	}

	if (!src)	

		return 0;



	var name = src;

	if( src.substr(0,1) == "#" ) 

		name = src.substr(1, src.length-1);

	var srcDiv = getElement(name);

	if( !srcDiv )

		return 1;



	//srcDiv.style.display = "none";

	return 0;

}

function kadovTextPopupOnLoad( el )

{

	return TextPopupOnLoad( el );

}

function getElementsByTag(obj,sTagName)

{

	if(obj.getElementsByTagName)

		return obj.getElementsByTagName(sTagName);

	else if(obj.all)

		return obj.all.tags(sTagName);

	return null;

}



function getElement(sID)

{

	if(document.getElementById)

		return document.getElementById(sID);

	else if(document.all)

		return document.all(sID);

	return null;

}



function getParentNode(obj)

{

	if(obj.parentNode)

		return obj.parentNode;

	else if(obj.parentElement)

		return obj.parentElement;

	return null;

}



function getChildNodes(obj)

{

	if(obj.childNodes)

	{

		var children = new Array();

		for (var i = 0; i < obj.childNodes.length; i++)

		{

			if (obj.childNodes[i].nodeType == 1)

				children[children.length] = obj.childNodes[i];

		}

		return children;

	}

	else if(obj.children)

		return obj.children;

	return null;	

}



function removeThis(obj)

{

	if(obj.parentNode)

		obj.parentNode.removeChild(obj);

	else

		obj.outerHTML="";

}



function TextPopup( el )

{

	if (!gbBsIE4 && !gbBsOpera7 && !gbBsSafari && !gbBsNS6 && !gbBsKonqueror3 )

		return;

	

	if (window.event)

		window.event.cancelBubble = true;



	if( typeof(el) == "string" )

		el = getElement(el);



	if (!el||el==window)

		return;



	for(var i=0; i<getChildNodes(el).length; i++)

	{

		var child = getChildNodes(el)[i];

		if( child && (child.tagName == "IMG") )

		{

			if(child.className == "Twisties")

			{

				if( child.style && (child.style.display == "") )

					child.style.display = "none";

				else if(child.style)

					child.style.display = "";

			}

		}



		if( child && (child.tagName == "SPAN") )

		{

			if(child.className == "MTText")

			{

				if( child.style && (child.style.display == "") )

					child.style.display = "none";

				else if(child.style)

					child.style.display = "";

			}

		}

	}

	

	var src = null;	

	if(!src&&el.id)

	{

		for (var i=0;i<gPopupData.length;i++)

			if (gPopupData[i].el==el.id)

			{

				src=gPopupData[i].popupId;

				break;

			}

	}

	if(!src)

		return;

		

	var name = src;

	if( src.substr(0,1) == "#" ) 

	name = src.substr(1, src.length-1);



	var srcDiv = getElement(name);

	if( !srcDiv )

		return;



	if( srcDiv )

	{

		if( srcDiv.style.display == "" )

			srcDiv.style.display = "none";

		else

		{

			if(srcDiv.className == "expandtext")

			{

				var inner = RetrieveTextInner(srcDiv);

				if( inner == "" )

					inner = srcDiv.innerHTML;

				if(inner.indexOf("&nbsp;") != 0 && inner.indexOf(" ") != 0 && inner.indexOf("&#160;"))

				{

					//insertAdjacentHTML(srcDiv, 'afterBegin', "&nbsp");

					try

					{

						if(srcDiv.childNodes)

						{

							var firstChild = srcDiv.childNodes[0];

							var newText = document.createTextNode(" ");

							srcDiv.insertBefore(newText, firstChild);

						}

					}

					catch(e)

					{

					}

				}

			}



			srcDiv.style.display = "";

		}

	}

	if(gbBsIE4)

		event.returnValue=false;

	return;

}



function kadovTextPopup( el )

{

	TextPopup( el );

}



function FindParentParagraph( el )

{

	if( typeof(el) == "string" )

		el = getElement(el);

	if( (!el) || el.tagName == "BODY" )

		return null;

	if( IsParagraph(getParentNode(el)) )

		return getParentNode(el);

	else

		return FindParentParagraph( getParentNode(el) );

}



function kadovFindParentParagraph( el )

{

	return FindParentParagraph( el );

}



//Begin HTML code invoked function

function RegisterEventHandler( obj, strEvent, strEventHandler )

{

	CCSSP.RegisterEventHandler( obj, strEvent, strEventHandler );

}



function kadovRegisterEventHandler( obj, strEvent, strEventHandler )

{

 RegisterEventHandler( obj, strEvent, strEventHandler );

}





function textPopupData(el, popupId)

{

	this.el = el;

	this.popupId = "#"+popupId;

}



var gPopupData = new Array();



function TextPopupInit( el, popupId)

{

	if (!gbBsIE4 && !gbBsOpera7 && !gbBsSafari && !gbBsNS6 && !gbBsKonqueror3)

		return;

		

	if( typeof(el) == "string" )

	{

		if (popupId)

		{

			gPopupData[gPopupData.length]=new textPopupData(el, popupId);

		}

		el = getElement(el);

	}

		

	if( el != null )

	{

		CCSSP.RegisterEventHandler( el, "onclick", "TextPopup(\"" + el.id +"\");" );

		CCSSP.RegisterEventHandler( window, "onload", "TextPopupOnLoad(\"" + el.id +"\");" );

	}

}



function kadovTextPopupInit( el, popupId)

{

	return TextPopupInit( el, popupId);

}

//End HTML code invoked function



//End to support extended and dropdown text effects.



//Begin to convert iWrite format to RoboEditor Format for DHTML effects

function InitTriggersInHead( )

{

  if( Object.xDelayedInitElements )

  {

     var x = Object.xDelayedInitElements;

     for(i=0; i<x.length; i++)

     	InitTrigger( x[i] );

  }

}



function kadovInitTriggersInHead( )

{

	InitTriggersInHead( );

}



//Begin HTML code invoked function

function FilePopupInit( el )

{

	if( typeof(el) == "string" )

		el = getElement(el);



	if( el != null )

		CCSSP.RegisterEventHandler( el, "onmouseover", "BSPSPopupOnMouseOver(event);" );

}

function kadovFilePopupInit( el )

{

	FilePopupInit( el );

}



function InitTrigger( element, a_targets )

{

//	if( !gbBsIE4 )

	//	return;

	var srcElement = element;

	if( typeof(srcElement) == "string" )

	{

		srcElement = getElement(element,0);

		if(srcElement == null)

			return;

	}

	

	//if( !IsParentVisible(srcElement) )

	//	return;

	

	var targets = null;

	if(typeof(a_targets) != "undefined")

		targets = a_targets;

	if(!targets)

		targets = getAttribute(srcElement, "x-targets" );

	if (!targets)

		targets = getAttribute(srcElement.style,"x-targets");

	if (!targets)

		return;	

	var arrOneTarget = targets.split( "," );

	for( var i = 0; i < arrOneTarget.length; i ++ )

		bsscFXInit( element, arrOneTarget[i], null, null, null, null );

}



function kadovInitTrigger( element )

{

	InitTrigger( element )

}



function IsParentVisible( el )

{

	if( typeof(el) == "string" )

		el = getElement(el);

	if( (!el) || el.tagName == "BODY" )

		return true;

	if( el.style.display == 'none' ) //el.visibility == 'hidden' || 

		return false;

	else

		return IsParentVisible( getParentNode(el) );

}



function kadovIsParentVisible( el )

{

	return IsParentVisible( el );

}

function InitEffects( element, effectsList )

{

	//if( !gbBsIE4 )

	//	return;

	var srcElement = element;

	if( typeof(srcElement) == "string" )

	{

		srcElement = getElement(element,0);

		if(srcElement == null)

			return;

	}

	

	//if( !IsParentVisible(srcElement) )

	//	return;



	if(effectsList)

	{

		//srcElement.setAttribute("style", effectsList);

		var str = effectsList;

		var nStart = 0;

		var indx = str.indexOf(":", nStart);

		var effect = null;

		var value = null;

		while(nStart >= 0 && indx > 0 && indx < str.length)

		{

			effect = effectsList.substr(nStart, indx-nStart);

			var indx2 = str.indexOf(";", nStart);

			if(indx2 == -1)

				indx2 = str.length;

			value = effectsList.substr(indx+1, indx2);

			if(effect && value)

			    setAttribute(srcElement,effect, value);

			nStart = effectsList.indexOf("x-on", indx2+1);

			indx = str.indexOf(":", nStart);

		}

		

	}

	

	InitEffect( srcElement, "x-on-hover" );

	InitEffect( srcElement, "x-on-pageclick" );

	InitEffect( srcElement, "x-on-pageload" );

	InitEffect( srcElement, "x-on-trigger-1" );

	InitEffect( srcElement, "x-on-trigger-2" );

}



function kadovInitEffects( element )

{

	InitEffects( element );

}

//End HTML code invoked function



function InitEffect( element, prop )

{

	var values = null;

	if( getAttribute(element,prop))		

		values = getAttribute(element, prop );	

	else if( getAttribute( element, "currentStyle" )  && element.currentStyle.getAttribute)

		values = element.currentStyle.getAttribute( prop );

	else  if (element.style.getAttribute)

		values = element.style.getAttribute( prop );

		

	if( !values )

		return;

    

	var functions = new Array();

	var nIdx = 0, nStart = 0;

	var nNext = values.indexOf( "\)", 0);

	while( nNext >= 0 && nNext < values.length )

	{

		functions[nIdx] = values.substr( nStart, nNext-nStart+1);

		nStart = nNext + 1;

		nIdx++;

		nNext = values.indexOf( "\)", nStart);

	}

		

	for( var i=0; i<functions.length; i++)

	{

		var id = getAttribute(element, "id" );

		var translatedProp = TranslateProp(prop);



		var lp = functions[i].indexOf( "(" );

		var fnname = functions[i].substring(0, lp);

		var srcargs = functions[i].substring(lp+1, functions[i].length-1);

		

		var nClickTimes = 1;

		var arrForClickCount = srcargs.split( "," );

		for( var j = 0; j < arrForClickCount.length; j++ )

		{// to locate and get the "clicks=99" settings

			var nPageClick = arrForClickCount[j].indexOf("clicks");

			if( nPageClick >= 0 )

			{

				nPageClick = arrForClickCount[j].indexOf("=");

				if( nPageClick > 0 )

				{

					nClickTimes = arrForClickCount[j].substring( nPageClick + 1, arrForClickCount[j].length) * 1;

					break;

				}

			}

		}

		var args = srcargs;

		if( j < arrForClickCount.length )

		{// to strip out the "clicks=99" from the arguments string

			args = "";

			for( var k = 0; k < arrForClickCount.length; k ++ )

			{

				if( k != j )

				{

					args += arrForClickCount[k];

					if( k < arrForClickCount.length - 1 )

						args += ",";

				}

			}

		}

		bsscFXInit( null, id, translatedProp, fnname, args, nClickTimes );

	}

}



function kadovInitEffect( element, prop )

{

	InitEffect( element, prop );

}



function TranslateProp( prop )

{

	switch( prop )

	{

	case "x-on-hover" :     return "bsschover";

	case "x-on-pageclick" : return "bsscpageclick";

	case "x-on-pageload" :  return "bsscpageload";

	case "x-on-trigger-1" : return "bssctrigger1";

	case "x-on-trigger-2" : return "bssctrigger2";

	}

	return null;

}



function kadovTranslateProp( prop )

{

	return TranslateProp( prop );

}



//End to convert iWrite format to RoboEditor Format for DHTML effects



//Begin the definition of one entry to DHTML effects

function bsscFXInit( trigger_ID, target_ID, event_type, 

	action_type, action_setting, event_addional )

{

	//if( typeof(target_ID) != "string" )//MUST have a target_ID

	//	return; // we don't support Navigator yet

	

	if( typeof(event_type) == "string" )

		event_type = event_type.toLowerCase();

	if( typeof(action_type) == "string" )

		action_type = action_type.toLowerCase();

	if( typeof(action_setting) == "string" )

		 action_setting = action_setting.toLowerCase();

	

	// to get the target element then add it to the target list

	var eleTarget = CCSSP.GetObject( target_ID );

	if( (eleTarget != null) && (event_type != null) && (action_type != null) )

	{

		

		CEngine.AddOneTarget( target_ID, eleTarget );

		CEngine.BuildTargetObject(target_ID, event_type, action_type, action_setting, event_addional);

	}

	

	// to validate the trigger_ID parameter

	if( typeof(trigger_ID) == "string" && trigger_ID != "" )

		CEngine.BuildTriggerObject( trigger_ID, target_ID );

}	

//End the definition of one entry to DHTML effects



/// Section End  - DHTM (JavaScript 1.2)



/// Section Begin  - CCSSP DHTM (JavaScript 1.2)



//Begin JavaScript libary for cross-platform positioning object.

function CCSSP(){} // constructor of CCSSP class



CCSSP.GetObject = function( obj )

{//convert object name string or reference into a valid object reference

	if( typeof(obj) == "object" )

		return obj;

	else if( typeof(obj) == "string" && obj != "")

	{

		if (gbBsNS6)

		    return getElement(obj);	

		else if( gbBsNS4 )

			return eval("document." + obj);

		else

			return eval("document.all(\"" + obj + "\")");

	}

	else

		return null;

}



CCSSP.MoveObjectTo = function(obj, x, y)

{//positioning an object at a specific pixel coordinate

	if( gbBsNS4 && !gbBsNS6) 

		obj.moveTo(x,y);

	else

	{

		if (x == '')

	        x = 0 ;

	    if (y == '')

	        y = 0 ;

	    obj.style.left = parseInt(x) + 'px';

	    obj.style.top = parseInt(y) + 'px'; 

	}

}



CCSSP.SetTimer = function(obj, timeout)

{

	if( obj.timer == null )

	{

		if(gbAIR)

		{

			obj.timer = setInterval(function(){CEngine.PerformAnimation( obj.aniIndex)}, timeout );

		}

		else

			obj.timer = setInterval("CEngine.PerformAnimation(" + obj.aniIndex + ")", timeout );

	}

}





CCSSP.MoveObjectBy = function(obj, dx, dy)

{//moveing a object by x and/or y pixel

	if (gbBsNS6)

	{

	    var left = parseInt(obj.style.left);

	    obj.style.setProperty('left',(left + dx ) + 'px',0) ;

	    var top =  parseInt(obj.style.top);

	    obj.style.setProperty('top' , (top + dy) + 'px' ,0);

	}

	else if( gbBsNS4 )

		obj.moveBy(dx,dy);

	else

	{

		obj.style.pixelLeft += dx;

		obj.style.pixelTop += dy;

	}

}



CCSSP.SetObjectBGColor = function(obj, color)

{//set the background color of an object

	if  (gbBsNS6)

	    obj.style.setProperty( "background-color" , color , 0);

	else if( gbBsNS4 )

		obj.bgColor = color;

	else

		obj.style.backgroundColor = color;

}



CCSSP.ShowObject = function(obj, bShow)

{// set the object to be visible or invisible

	if (gbBsNS6)

	    obj.style.setProperty('visibility', (bShow == true) ? 'visible' : 'hidden',null);

	else if( gbBsNS4 )

		obj.visibility = (bShow == true) ? 'show' : 'hide';

	else

		obj.style.visibility = (bShow == true) ? 'visible' : 'hidden';// when hidden, it still occupy some space.

}



CCSSP.GetObjectLeft = function(obj)

{// retrieve the x coordinate of a posionable object

	if (gbBsNS6)

	    return obj.style.left ;

	else if( gbBsNS4 )

		return obj.left;

	else

		return obj.style.pixelLeft;

}



CCSSP.GetObjectTop = function(obj)

{// retrieve the y coordinate of a posionable object

	if (gbBsNS6)

	    return obj.style.top ;

	else if( gbBsNS4 )

		return obj.top;

	else

		return obj.style.pixelTop;

}



CCSSP.GetObjectContainLeft = function(obj)

{// retrieve the x coordinate of a posionable object relative to it's parent element

	if( typeof(obj.pageX) != 'undefined')

		return obj.pageX;

	else if( typeof(obj.clientLeft) != 'undefined' )

		return obj.clientLeft;

	else

	    return obj.offsetLeft;	

}



CCSSP.GetObjectWindowLeft = function(obj)

{// retrieve the x coordinate of a posionable object relative to browser window

	if( gbBsNS4 && !gbBsNS6)

		return obj.pageX;

	else

	{

		var nOffsetWindowLeft = 0;

		for(var element = obj; element; element = element.offsetParent)

			nOffsetWindowLeft += CCSSP.GetObjectContainLeft(element);

		return nOffsetWindowLeft;

	}

}



CCSSP.GetObjectContainTop = function(obj)

{// retrieve the y coordinate of a posionable object relative to it's parent element

	if( typeof(obj.pageY) != 'undefined')

		return obj.pageY;

	else if( typeof(obj.clientTop) != 'undefined' && obj == document.body)

		return obj.clientTop;

	else

		return obj.offsetTop;	

}



CCSSP.GetObjectWindowTop = function(obj)

{// retrieve the y coordinate of a posionable object relative to browser window

	if( gbBsNS4 && !gbBsNS6)

		return obj.pageY;

	else

	{

		var nOffsetWindowTop = 0;

		for(var element = obj; element; element = element.offsetParent)

			nOffsetWindowTop += CCSSP.GetObjectContainTop(element);

		return nOffsetWindowTop;

	}

}



CCSSP.GetObjectHeight = function(obj)

{// retrieve the height of a posionable object

	if( gbBsNS4 && !gbBsNS6)

		return obj.clip.height;

	else

		return obj.offsetHeight;

}



CCSSP.GetObjectWidth = function(obj)

{// retrieve the width of a posionable object

	if( gbBsNS4 && !gbBsNS6)

		return obj.clip.width;

	else

		return obj.offsetWidth;

}



CCSSP.RegisterEventHandler = function( srcObj, rawEventName, funcHandler )

{ // to add the "funcHandler" as the "rawEventName" 's handler to the "srcObj" object,the original event handler will be combined



	if( srcObj == window && rawEventName == 'onload' )

	{

		var bSet = false;

		if( window.addEventListener )

		{

			window.addEventListener( 'load', new Function("event", funcHandler ),false);

			bSet = true;

		}

		else if( window.attachEvent )

		{

			window.attachEvent('onload', new Function("event", funcHandler ), false);

			bSet = true;

		}

		

		if( bSet )

			return;

	}

	

	if (gbBsNS4 && !gbBsNS6)

		return ;

		

	var oldHandler = "";



	if (gbBsMac &&gbBsIE4&&!gbBsIE5)

	{

		if (typeof(srcObj[rawEventName.toLowerCase()])=="unknown")

		{ //search for <SCRIPT> tag which define the event handler

			for( var i = 0; i < document.scripts.length; i++ ) 

			{

				var script = document.scripts[i];

				if( (script.htmlFor == srcObj.id || script.htmlFor == srcObj ) && script.event == rawEventName )

				{

					oldHandler = script.innerHTML;

					break;

				}

			}

		}

	}

	else

	{

		var oldInlineHandler = srcObj[rawEventName.toLowerCase()];

		if( oldInlineHandler != null && typeof(oldInlineHandler) != "undefined")

		{

			var functionDefinition = oldInlineHandler.toString();

			var bodyStart = functionDefinition.indexOf( "{" );

			var bodyEnd = functionDefinition.lastIndexOf( "}" );

			if( bodyStart > 0 || bodyEnd > bodyStart )

				oldHandler = functionDefinition.substr( bodyStart + 1, bodyEnd - bodyStart - 2 );

		}

		else if( gbBsIE4 )

		{ //search for <SCRIPT> tag which define the event handler

			for( var i = 0; i < document.scripts.length; i++ ) 

			{

				var script = document.scripts[i];

				if( (script.htmlFor == srcObj.id || script.htmlFor == srcObj ) && script.event == rawEventName )

				{

					oldHandler = script.innerHTML;

					break;

				}

			}

		}

	}

	if( oldHandler.indexOf(funcHandler) >= 0 )

		return;// to prevent register the funtion twice.



	if( gbBsNS4 ) // only "onload, onresize, onfocus" apply to window

	{// other raw events will apply to layer

		var noOn = rawEventName.substring(2, rawEventName.length);

		if( typeof(noOn) == "string" && noOn.length > 3 ) {

			if (srcObj.captureEvents)

				srcObj.captureEvents( Event[noOn.toUpperCase()] );

		}

	}

	

	var newHandler = oldHandler;

	if( newHandler.length == 0 )

		newHandler = funcHandler;

	else

		newHandler += "; " + funcHandler;	

	if ((gbBsNS6)&&(srcObj.addEventListener))

	    srcObj.addEventListener( noOn.toLowerCase(), new Function("event", newHandler ),false);

	else

	    srcObj[rawEventName.toLowerCase()] = new Function( newHandler );	

}



CCSSP.GetWindowHeight = function()

{// retrieve the height of available content in browser window

	if( gbBsNS4 )

		return window.innerHeight;

	else

		return document.body.clientHeight;

}



CCSSP.GetWindowBottom = function()

{// retrieve the bottom postion of browser window

	if( gbBsNS4 )

		return window.outerHeight + window.pageYOffset;

	else

		return document.body.clientHeight + getScrollTop();

}



CCSSP.GetWindowWidth = function()

{// retrieve the width of available content in browser window

	if( gbBsNS4 )

		return window.innerWidth;

	else

		return document.body.clientWidth;

}



CCSSP.GetWindowRight = function()

{// retrieve the right postion of browser window

	if( gbBsNS4 )

		return window.outerWidth + window.pageXOffset;

	else

		return document.body.clientWidth + getScrollLeft();

}



CCSSP.TrimString = function( objString, subtrim )

{// to trim the "subtrim" in the beginning and ending of a string object

	if( typeof(subtrim) != "string" || subtrim == null )

		return objString;

	var strHead = objString.substring(0, 1);

	var strRear = objString.substring(objString.length-1, objString.length);

	if( strHead != subtrim && strRear != subtrim )

		return objString;

	

	var spacePos = objString.indexOf(subtrim);

	if( spacePos < 0 )

		return objString;

	else if( spacePos == objString.length - 1 )

		return objString.substring(0, spacePos);

	else

	{

		var newString = objString.substring( spacePos + 1, objString.length);

		return CCSSP.TrimString( newString, subtrim );

	}

}



CCSSP.TrimSpace = function( objString )

{

	var Trim1 = CCSSP.TrimString( objString, " ");

	if( typeof(Trim1) != "string" || Trim1 == null )

	    return Trim1;

	var strHead = Trim1.substring(0, 1);

	if(strHead == "\"")

	    return CCSSP.TrimString( Trim1, "\"");

	return CCSSP.TrimString( Trim1, "\'");

}



CCSSP.GetEventElement = function( navEventObject )

{// to get the element who fired the current event

	if(gbBsNS4) 

		return navEventObject.target;

	else

		return event.srcElement;

}



CCSSP.PrepareFilter = function( Obj )

{//to prepare for making the filter work

	Obj.style.filter = "";

	if(Obj.style.position == "absolute" )

		return;

	if(gbBsIE7)

	{

		if( Obj.style.zoom != "")

			return;

		Obj.style.zoom = 1;

	}

	else

	{

		if(Obj.style.width != "" || Obj.style.height != "")

			return;

		Obj.style.height = CCSSP.GetObjectHeight(Obj);

	}

}



CCSSP.IsDescendant = function( progenitor, progeny )

{

	if( typeof(progeny) == "undefined" || progeny == null )

		return false;

	else if( progeny == progenitor )

		return true; 

	else if( progeny.id == progenitor.id ) 

		return true; 

	else if( getParentNode(progeny) == getParentNode(progenitor))

		return false;

	else

		return CCSSP.IsDescendant( progenitor, getParentNode(progeny));

}



CCSSP.IsTextTag = function( Obj )

{

	if( typeof( Obj.tagName ) == "undefined" )

		return false;

	return( Obj.tagName.indexOf("H") == 0 || Obj.tagName == "P" || 

			Obj.tagName == "FONT" || Obj.tagName == "SPAN" );

}



//End JavaScript libary for cross-platform positioning object.



/// Section End  - CCSSP DHTM (JavaScript 1.2)



/// Section Begin  - CCSSP DHTM 1 (JavaScript 1.2)



//Begin the definition of class CTrigger

function CTrigger( TriggerElement )

{

	// object : the trigger element. Never be null. 

	this.eleTrigger = TriggerElement;

	

	// number : the click counter number: only 3 values: 0,1,2;

	this.nCounter = 0; 

	

	//object as associative array of string:

	// the associate target ID strings; one element at least.			

	this.objStrTarget = new Object();

	this.eleTrigger.style.cursor = "pointer";

	if( this.eleTrigger.tagName == "AREA" && getAttribute(this.eleTrigger,"href") == "" )

		setAttribute(this.eleTrigger , "href", "#"); // to make a hand cursor for image map

}



CTrigger.prototype.AddTargetID = function( strTargetID )

{// add one target ID string to the objStrTarget

	if( typeof(strTargetID) != "string" )

		return ;

	if( typeof(this.objStrTarget[strTargetID]) != "string" )

		this.objStrTarget[strTargetID] = strTargetID;

}



CTrigger.prototype.OnTriggerClick = function(event)

{// to activate all asociated target

	var strEventType = ( (this.nCounter++)% 2 == 0 ) ? 

		"bssctrigger1" : "bssctrigger2";

		

	// to enumerate associative target element's ID string

	for( var strTargetID in this.objStrTarget ) 

		CEngine.SendEventToOneTarget( strTargetID, strEventType ,event);

}

//End the definition of class CTrigger



//Begin the definition of class CTarget

function CTarget( TargetElement )

{

	// object : the target element. Never be null.

	this.eleTarget = TargetElement;

	this.objManager = new Object(); // object: the event manager

} 



CTarget.nPageClickCounter = 0;// static class property.



CTarget.prototype.GetAgencyObject = function(str_action_type,action_setting )

{// return the action agency ( effect )object's refernece 

	switch( str_action_type )

	{

	case "show":return new CAgencyShow( this.eleTarget, true ) ;

	case "hide":return new CAgencyShow( this.eleTarget, false ) ;



    case "flyin" : 

    	return new CAgencyFly(this.eleTarget, action_setting, true);

    case "flyout" : 

    	return new CAgencyFly(this.eleTarget, action_setting, false);

    case "spiralin" : 

    	return new CAgencySpiral(this.eleTarget, action_setting, true);

    case "spiralout" : 

    	return new CAgencySpiral(this.eleTarget, action_setting, false);

    case "zoomin" :

    	return new CAgencyZoom(this.eleTarget, action_setting, true);

    case "zoomout" : 

    	return new CAgencyZoom(this.eleTarget, action_setting, false);

    case "elastic" : 

		return new CAgencyElastic(this.eleTarget, action_setting);

		

    case "fadein" : 

    	return new CAgencyAlpha(this.eleTarget, action_setting, true) ;

    case "fadeout" :

    	return new CAgencyAlpha(this.eleTarget, action_setting, false) ;

    case "rockrollstatic" :

    case "rockroll" :

    	return  new CAgencyWave(this.eleTarget, action_setting, false) ;

 

    case "glow":

    	return  new CAgencyGlow(this.eleTarget,action_setting);

    case "dropshadow":

    	return new CAgencyDropShadow(this.eleTarget,action_setting);

    case "transition" :

    	return new CAgencyRevealTrans(this.eleTarget,action_setting) ;

    case "blur" :

    	return  new CAgencyBlur(this.eleTarget,action_setting) ;



    case "fliph" : // all these 4 do NOT need any parameters

    case "flipv" :

    case "invert":

    case "gray" :

    	return new CAgencyChangeFilter(this.eleTarget, str_action_type) ;

    

    case "fontchange": // the effects below change the style on the fly, so won't work in Navigator

    	return new CAgencyFontChange(this.eleTarget,action_setting) ;

    case "boderchange": 

    case "stylechange":

    	return new CAgencyChangeStyle(this.eleTarget,action_setting);



	default: return null;

	}

}



CTarget.prototype.SetEventManager = function( 

	one_event_type,str_action_type,action_setting,event_additional)

{// to set the event manager with specified action 

	if( typeof( one_event_type ) != "string" ||	

		typeof( str_action_type ) != "string"||

		typeof( action_setting ) != "string" )

		return false;

	if( typeof(this.objManager[one_event_type]) == "undefined" )

	{

		this.objManager[one_event_type] = new Object();

		this.objManager[one_event_type].length = 0;

	}

	

	var eventAgency = this.GetAgencyObject(str_action_type,action_setting);

	if( eventAgency != null )

	{

		var ct = this.objManager[one_event_type].length ++;

		this.objManager[one_event_type][ct] = eventAgency;

		

		if( one_event_type == "bsscpageclick" )

		{// to deal with the "number of pageclick" stuff

			if( typeof(event_additional) == "number" )

				this.objManager[one_event_type][ct].nPageClick = event_additional;

			else // set the default number 

				this.objManager[one_event_type][ct].nPageClick = 1;

			

			if( (typeof(this.objManager.nMinPageClickIndex) == "undefined") ||

			    (this.objManager[one_event_type][ct].nPageClick < 

					this.objManager[one_event_type][this.objManager.nMinPageClickIndex].nPageClick) )

				this.objManager.nMinPageClickIndex = ct;

		}

		

		//hide the object blindly,SetState function will take care of the final correct state

		if( ((one_event_type == "bsscpageclick") && 

			 (this.objManager[one_event_type][ct].nPageClick == 1)) ||

			one_event_type == "bsscpageload" ||

			one_event_type == "bssctrigger1" )

			CCSSP.ShowObject( this.eleTarget, false );

		

		if( one_event_type == "bssctrigger1" || one_event_type == "bssctrigger2" )

			if( typeof( this.strTriggerEvent ) == "undefined" )

				this.strTriggerEvent = ( one_event_type == "bssctrigger1" ) ? "bssctrigger2" : "bssctrigger1";

			

		return true;

	}

	return false;

}



CTarget.prototype.OnEvent = function( strBsscEvent,event )

{// response to the event ( bssc format )

	if( typeof(this.objManager[strBsscEvent]) == "object" )

	{ // to get the event agency from the event manager

		var eventAgency = this.objManager[strBsscEvent];

		for( var i = 0; i < eventAgency.length; i++ )

		{

			if( strBsscEvent == "bsscpageclick" && 

			 	eventAgency[i].nPageClick != CTarget.nPageClickCounter )

				 continue;

			else if( strBsscEvent == "bsschover" && event.type == "mouseout" )

				eventAgency[i].EndEffect();

			else // to invoke the unified function in effect object	

				eventAgency[i].UpdateEffect(); 

		}

	}

}



CTarget.prototype.SetState = function( strBsscEvent )

{

	if( typeof(this.objManager[strBsscEvent]) != "object" )

		return false;



	// to get the event agency from the event manager

	var eventAgency = this.objManager[strBsscEvent];

	

	if( strBsscEvent == "bsscpageclick" )

	{// we only set the initial state for the minium number of pageclick 

		if (this.objManager.nMinPageClickIndex == 'undefined')

		    this.objManager.nMinPageClickIndex = 0 ;

		eventAgency[this.objManager.nMinPageClickIndex].PrepareEffect();

		return true;

	}

	else

	{

		for( var i = 0; i < eventAgency.length; i++ )

			eventAgency[i].PrepareEffect(); // to invoke the unified function in effect object	 

		if( i > 0 )

			return true;

		else

			return false;

	}

}

//End the definition of class CTarget



//Begin the definition of CEngine class

function CEngine(){}// all properities are going be "class" properities



// object : as associative array of trigger objects

CEngine.objTrigger = new Object();

// object : as associative array of target objects 

CEngine.objTarget = new Object(); 



// Array : each element is a CAgencyXXX animation object

CEngine.arrAnimation = new Array();

CEngine.PerformAnimation = function( nIndex )

{// animation : update effects function

	CEngine.arrAnimation[nIndex].UpdateEffect();

}



CEngine.AddOneTrigger = function(TriggerID,TriggerElement)

{// add one Trigger object into the trigger array

	if( typeof(TriggerID) != "string" || TriggerElement == null ||

	    typeof(TriggerElement) != "object" )

		return;

	if( typeof(CEngine.objTrigger[TriggerID] ) != "object" )

		CEngine.objTrigger[TriggerID] = new CTrigger(TriggerElement);

}

	

CEngine.AddOneTarget = function(TargetID, TargetElement)

{// add one Target object into the target array

	if( typeof(TargetID) != "string" || TargetElement == null ||

		typeof(TargetElement) != "object" )

		return;

	if( typeof(CEngine.objTarget[TargetID]) != "object" )

		CEngine.objTarget[TargetID] = new CTarget( TargetElement );	

}



CEngine.SendEventToOneTarget = function(strTargetID, strBsscEvent,event )

{// to activate one target object

	if( typeof(CEngine.objTarget[strTargetID]) == "object" ) 

	{

		if( strBsscEvent == "bssctrigger1" || strBsscEvent == "bssctrigger2" )

		{//now, the "bssctrigger1" and "bssctrigger2" work like a toggle

			if( strBsscEvent == CEngine.objTarget[strTargetID].strTriggerEvent )

				strBsscEvent = (strBsscEvent == "bssctrigger1") ? "bssctrigger2" : "bssctrigger1";

			CEngine.objTarget[strTargetID].strTriggerEvent = strBsscEvent;

		}

		CEngine.objTarget[strTargetID].OnEvent( strBsscEvent,event );

	}

}



CEngine.SendEventToAllTarget = function( strBsscEvent,event )

{ //to activate all target associative to the BSSC event

	for( var strTargetID in CEngine.objTarget ) //to enumerate all target

		CEngine.SendEventToOneTarget( strTargetID, strBsscEvent,event );

}



CEngine.SetOneTargetInitialState = function( strTargetID )

{// only invoked after ALL effects for the target have been set

	if( typeof(CEngine.objTarget[strTargetID]) == "object" ) 

	{// to get target object

		var objTarget = CEngine.objTarget[strTargetID];

		if( objTarget.SetState( "bsscpageload" ) == false )

		{

			objTarget.SetState( "bsscpageclick" );

			objTarget.SetState( "bssctrigger1" );

		}

	}

}



CEngine.AdjustPageClickCounter = function()

{

	var nAdjustedClickCounter = CTarget.nPageClickCounter;

	var bAdjusted = false;

	for( var strTargetID in CEngine.objTarget ) //to enumerate all target

	{// try to find the minum pageCliclConter greater than CTarget.nPageClickCounter

		var objEventPageClick = CEngine.objTarget[strTargetID].objManager.bsscpageclick;

		if( objEventPageClick != null )

		{

			for( var i = 0; i < objEventPageClick.length; i++ )

			{

				var nOtherPageClick = objEventPageClick[i].nPageClick;

				if( nOtherPageClick == CTarget.nPageClickCounter )

					return;

				if( nOtherPageClick > CTarget.nPageClickCounter )

				{

					if( !bAdjusted )

					{

						nAdjustedClickCounter = nOtherPageClick;

						bAdjusted = true;

					}

					else if( nOtherPageClick < nAdjustedClickCounter )

						nAdjustedClickCounter = nOtherPageClick;

				}

			}

		}

	}

	CTarget.nPageClickCounter = nAdjustedClickCounter;

}



CEngine.OnPageLoad = function(event)

{ 	

	// first, to set all target's initial state

	for( var strTargetID in CEngine.objTarget )

		CEngine.SetOneTargetInitialState( strTargetID );

	

	// to invoke all target's onpageload handler

	CEngine.SendEventToAllTarget( "bsscpageload",event );

}



CEngine.OnPageClick = function(event)

{ // to invoke all target's onpageclick handler

   	var src = CCSSP.GetEventElement( arguments[0] );

   	if( src == null )

		return;

		

	var objClickedTrigger = null;

	for( var strTriggerID in CEngine.objTrigger )

	{ // to detect which trigger is clicked

		if( CCSSP.IsDescendant( CEngine.objTrigger[strTriggerID].eleTrigger,src) )

		{

			objClickedTrigger = CEngine.objTrigger[strTriggerID];

			break;

		}

	}

	

	if( objClickedTrigger != null) // the clicked trigger found

		objClickedTrigger.OnTriggerClick(event);

	else // no trigger is clicked

	{ // to send PageClick event to all target

		CTarget.nPageClickCounter++;

		CEngine.AdjustPageClickCounter();

		CEngine.SendEventToAllTarget( "bsscpageclick" ,event);

	}

}	



CEngine.OnMouseOver = function(event)

{ // to invoke all target's onpageload handler

	var src = CCSSP.GetEventElement( arguments[0] );

	if( src == null )

		return;

		

	var strHoveredTargetID = null;

	for( var strTargetID in CEngine.objTarget )

	{ // to detect which Target is hovering on

		if( CCSSP.IsDescendant( CEngine.objTarget[strTargetID].eleTarget, src ) )

	    {

			strHoveredTargetID = strTargetID;

			break;

	    }

	}

	

	if( strHoveredTargetID != null ) // the hovered target found

		CEngine.SendEventToOneTarget( strHoveredTargetID, "bsschover",event );

}



CEngine.BuildTargetObject = function(target_ID,event_type,action_type,

			action_setting, event_additional)

{// to build target object 

	// to get the target object

	if( typeof( CEngine.objTarget[target_ID] ) != "object" )

		return false;// the engine's AddOneTarget function might have failed.

	var TargetObject = CEngine.objTarget[target_ID];

	

	// to prepare the parameters for the event manager

	var arrEvent = event_type.split("|"); // to split the combined event_type string

	var arrAction = action_type.split("|");//to split the combined action_type string

	for( var trim = 0; trim < arrEvent.length; trim++ )

		arrEvent[trim] = CCSSP.TrimSpace(arrEvent[trim]);

	

	for( trim = 0; trim < arrAction.length; trim++ )

		arrAction[trim] = CCSSP.TrimSpace(arrAction[trim]);

	

	var arrSetting = new Array(); 

	if( typeof(action_setting) == "string" )

		arrSetting = action_setting.split("|");// to split the combined action_setting string

	// to calibrate the arrays

	for( var i = arrSetting.length; i < arrAction.length; i++ )

	{

		if( typeof(arrSetting[i]) != "string" )

			 arrSetting[i] = "";

	}				 



	// to prepare for dealing with the absolute posioning element

	TargetObject.eleTarget.ABSX = CCSSP.GetObjectLeft( TargetObject.eleTarget );

	TargetObject.eleTarget.ABSY = CCSSP.GetObjectTop( TargetObject.eleTarget );



	if( arrEvent.length > 1 )

	{// if event is combined, it must be : "bssctrigger1 | bssctrigger2"

		if( arrAction.length != 2 )

			return false; // if event is combined, there must be 2 actions

		for( i = 0 ; i < 2; i++ )

		{

			if( TargetObject.SetEventManager(arrEvent[i], arrAction[i], 

				arrSetting[i], event_additional) == false )

				return false; // the event manager has not been set up

		}

	}

	else // the event_type string is not combined

	{

		for( i = 0 ; i < arrAction.length; i++ )

		{

			TargetObject.SetEventManager(event_type, arrAction[i], arrSetting[i], event_additional);

			// to validate the event manager

			if( typeof(TargetObject.objManager[event_type]) != "object" ||

					typeof(TargetObject.objManager[event_type][i]) != "object" )

				return false; // the event manager has not been set up

		}

	}

	return true;

}



CEngine.BuildTriggerObject = function(trigger_ID, target_ID)

{// to build the trigger object

	var arrTrigger = trigger_ID.split("|"); // to split the combined trigger_ID string

	for( var i = 0; i < arrTrigger.length; i ++ )

	{// to get the trigger element then add it to the trigger list

		arrTrigger[i] = CCSSP.TrimSpace( arrTrigger[i] );

		var eleTrigger = CCSSP.GetObject( arrTrigger[i] );

		if( eleTrigger == null )

			continue; // the trigger_ID string in the HTML code maybe wrong

		CEngine.AddOneTrigger( arrTrigger[i], eleTrigger );



		// to get the target object

		if( typeof( this.objTrigger[arrTrigger[i]] ) != "object" )

			continue;// the engine's AddOneTarget function might have failed.

		CEngine.objTrigger[arrTrigger[i]].AddTargetID( target_ID );

	}

}

//End the definition of CEngine class



/// Section End  - CCSSP DHTM 1 (JavaScript 1.2)



/// Section Begin  - CCSSP DHTM 2 (JavaScript 1.2)



//Begin the definition of CAgencyXXXX classes



//Begin of the CAgencyShow definition

function CAgencyShow( element, bIsShow )

{

	this.ele = element;

	this.bIsShow = bIsShow;

}



CAgencyShow.prototype.PrepareEffect = function()

{

	CCSSP.ShowObject( this.ele, !this.bIsShow );

}



CAgencyShow.prototype.UpdateEffect = function()

{

	CCSSP.ShowObject( this.ele, this.bIsShow );

}



CAgencyShow.prototype.EndEffect = function()

{

	CCSSP.ShowObject( this.ele, !this.bIsShow );

}

// End of the CAgencyShow definition



// Begin of CAgencyFly definition

function CAgencyFly( element, settings, bIsIn )

{

	this.ele = element;

	this.bIsIn = bIsIn;

	this.duration = 1000; // default

	this.direction = "right";



	var arrAllSet = settings.split(",");

	for( var i = 0; i < arrAllSet.length; i ++ )

	{// to retrieve the setting

		arrAllSet[i] = CCSSP.TrimSpace(arrAllSet[i]);

		var arrOneSet = arrAllSet[i].split("=");

		for( var j = 0; j < arrOneSet.length; j++ )

			arrOneSet[j] = CCSSP.TrimSpace(arrOneSet[j]);

		switch( arrOneSet[0] )

		{

		case "speed" : this.duration = 100000/arrOneSet[1]; break;

		case "direction" : this.direction = arrOneSet[1]; break;

		}

	}

		

	if( this.ele.style.position != "absolute" )

		this.ele.style.position = "relative";

	this.timer = null;

	this.aniIndex = CEngine.arrAnimation.length;

	CEngine.arrAnimation[this.aniIndex] = this;

}



CAgencyFly.prototype.PrepareEffect = function()

{

	CCSSP.ShowObject(this.ele, !this.bIsIn );

}



CAgencyFly.prototype.UpdateEffect = function()

{

	if( this.timer == null )

		this.ResetParameters();



	var percent = ((new Date()).getTime() - this.startTime)/this.duration;

	if( percent >= 1.0 )

		this.EndEffect();

	else

	{

		var newX = this.startX*(1.0-percent) +  this.finalX*percent;

		var newY = this.startY*(1.0-percent) +  this.finalY*percent;

		CCSSP.MoveObjectTo(this.ele, newX, newY);

		CCSSP.SetTimer(this,20);

	}

}



CAgencyFly.prototype.EndEffect = function()

{

	clearInterval( this.timer );

	this.timer = null;



	if( this.bIsIn ) // FlyIn

		CCSSP.MoveObjectTo(this.ele, this.finalX, this.finalY);

	else // FlyOut

		CCSSP.MoveObjectTo(this.ele, this.startX, this.startY);

	CCSSP.ShowObject(this.ele, this.bIsIn );

}



CAgencyFly.prototype.ResetParameters = function()

{

	this.PrepareEffect();

	CCSSP.ShowObject(this.ele, true );



	this.startX = 0;

	this.startY = 0;

	this.finalX = 0;

	this.finalY = 0; 

	

	var offsetLeft = CCSSP.GetObjectWindowLeft(this.ele) + this.ele.offsetWidth;

	var offsetTop = CCSSP.GetObjectWindowTop(this.ele) + this.ele.offsetHeight;

	var offsetRight = CCSSP.GetWindowRight();

	var offsetBottom = CCSSP.GetWindowBottom();



	if( this.bIsIn )

	{ // FlyIn

		this.finalX = this.ele.ABSX;

		this.finalY = this.ele.ABSY;



		switch( this.direction )

		{

		case "right": this.startX = offsetRight; this.startY = this.finalY; break;

		case "left": this.startX = -offsetLeft;  this.startY = this.finalY; break;

		case "down": this.startY = offsetBottom; this.startX = this.finalX; break;

		case "up":  this.startY = -offsetTop;    this.startX = this.finalX; break;

		case "downright":

  			this.startX = ( offsetBottom < offsetRight) ? offsetBottom : offsetRight;

			this.startY = this.startX;		break;

		case "upright":

  			this.startX = (offsetTop < offsetRight)? offsetTop : offsetRight;

			this.startY = -this.startX;		break;

		case "upleft":

			this.startX = -((offsetTop < offsetRight)? offsetTop : offsetRight);

			this.startY = this.startX;		break;

		case "downleft":

			this.startX = -(( offsetBottom < offsetRight) ? offsetBottom : offsetRight);

			this.startY = -this.startX;     break;

		}

	}

	else

	{ // FlyOut

		this.startX = this.ele.ABSX;

		this.startY = this.ele.ABSY;



		switch( this.direction )

		{

		case "right": this.finalX = offsetRight;  this.finalY = this.startY; break;

		case "left": this.finalX = -offsetLeft;   this.finalY = this.startY;  break;

		case "down": this.finalY = offsetBottom;  this.finalX = this.startX; break;

		case "up":  this.finalY = -offsetTop;     this.finalX = this.startX; break;

		case "downright":

  			this.finalX = ( offsetBottom < offsetRight) ? offsetBottom : offsetRight;

			this.finalY = this.finalX;		break;

		case "upright":

  			this.finalX = (offsetTop < offsetRight)? offsetTop : offsetRight;

			this.finalY = -this.finalX;		break;

		case "upleft":

			this.finalX = -((offsetTop < offsetRight)? offsetTop : offsetRight);

			this.finalY = this.finalX;		break;

		case "downleft":

			this.finalX = -(( offsetBottom < offsetRight) ? offsetBottom : offsetRight);

			this.finalY = -this.finalX;     break;

		}

	}

	CCSSP.MoveObjectTo(this.ele, this.startX, this.startY);

	this.startTime = (new Date()).getTime();

}

// End of the CAgencyFly definition



// Begin of CAgencySpiral

function CAgencySpiral( element, settings, bIsIn )

{

	this.ele = element;

	this.bIsIn = bIsIn;

	this.duration = 1000; // default



	var arrAllSet = settings.split(",");

	for( var i = 0; i < arrAllSet.length; i ++ )

	{// to retrieve the setting

		arrAllSet[i] = CCSSP.TrimSpace(arrAllSet[i]);

		var arrOneSet = arrAllSet[i].split("=");

		for( var j = 0; j < arrOneSet.length; j++ )

			arrOneSet[j] = CCSSP.TrimSpace(arrOneSet[j]);

		switch( arrOneSet[0] )

		{

		case "speed" : this.duration = 100000/arrOneSet[1]; break;

		}

	}



	if( this.ele.style.position != "absolute" )

		this.ele.style.position = "relative";

	this.timer = null;

	this.aniIndex = CEngine.arrAnimation.length;

	CEngine.arrAnimation[this.aniIndex] = this;

}



CAgencySpiral.prototype.PrepareEffect = function()

{

	CCSSP.ShowObject(this.ele, !this.bIsIn );

}



CAgencySpiral.prototype.UpdateEffect = function()

{

	if( this.timer == null )

		this.ResetParameters();



	var percent = ((new Date()).getTime() - this.startTime)/this.duration;

	if( percent >= 1.0 )

		this.EndEffect();

	else

	{

		var rf = (this.bIsIn)? (1.0 - percent) : percent; 

		var t = (1.0-rf) * 4.0 * Math.PI

		var rxP = (this.bIsIn)? this.startX : this.finalX; 

		var ryP = (this.bIsIn)? this.startY : this.finalY; 

		var rx = (Math.abs(rxP) < 200) ? Math.abs(rxP) : 200;

		var ry = (Math.abs(ryP) < 200) ? Math.abs(ryP) : 200;



		var newX = Math.ceil(-rf*Math.cos(t)*rx) + this.ele.ABSX;

		var newY = Math.ceil(-rf*Math.sin(t)*ry) + this.ele.ABSY;

		CCSSP.MoveObjectTo(this.ele, newX, newY);

		CCSSP.SetTimer(this,20);

	}

}



CAgencySpiral.prototype.EndEffect = function()

{

	clearInterval( this.timer );

	this.timer = null;

	

	if( this.bIsIn ) // In

		CCSSP.MoveObjectTo(this.ele, this.finalX, this.finalY);

	else // Out

		CCSSP.MoveObjectTo(this.ele, this.startX, this.startY);

	CCSSP.ShowObject(this.ele, this.bIsIn );

}



CAgencySpiral.prototype.ResetParameters = function()

{

	this.PrepareEffect();

	CCSSP.ShowObject(this.ele, true );

	this.startX = (this.bIsIn)? CCSSP.GetWindowRight() : this.ele.ABSX;

	this.startY = (this.bIsIn)? CCSSP.GetWindowBottom() : this.ele.ABSY;

	this.finalX = (this.bIsIn)? this.ele.ABSX : CCSSP.GetWindowRight();

	this.finalY = (this.bIsIn)? this.ele.ABSY : CCSSP.GetWindowBottom(); 

	

	CCSSP.MoveObjectTo(this.ele, this.startX, this.startY);

	this.startTime = (new Date()).getTime();

}

// End of CAgencySpiral



// Begin of CAgencyElastic

function CAgencyElastic( element, settings)

{

	this.ele = element;

	this.duration = 1000; // default

	this.direction = "right";



	var arrAllSet = settings.split(",");

	for( var i = 0; i < arrAllSet.length; i ++ )

	{// to retrieve the setting

		arrAllSet[i] = CCSSP.TrimSpace(arrAllSet[i]);

		var arrOneSet = arrAllSet[i].split("=");

		for( var j = 0; j < arrOneSet.length; j++ )

			arrOneSet[j] = CCSSP.TrimSpace(arrOneSet[j]);

		switch( arrOneSet[0] )

		{

		case "speed" : this.duration = 100000/arrOneSet[1]; break;

		case "direction" : this.direction = arrOneSet[1]; break;

		}

	}

		

	if( this.ele.style.position != "absolute" )

		this.ele.style.position = "relative";

	this.timer = null;

	this.aniIndex = CEngine.arrAnimation.length;

	CEngine.arrAnimation[this.aniIndex] = this;

}



CAgencyElastic.prototype.PrepareEffect = function()

{

	CCSSP.ShowObject(this.ele, false );

}



CAgencyElastic.prototype.UpdateEffect = function()

{

	if( this.timer == null )

		this.ResetParameters();



	var percent = ((new Date()).getTime() - this.startTime)/this.duration;

	if( percent >= 1.0 )

		this.EndEffect();

	else

	{

		var newX = this.startX;

		var newY = this.startY;

		var rf = Math.exp(-percent*3);

		var t = percent * 1.5 * Math.PI

		var rx = (Math.abs(this.startX) > Math.abs(this.startY)) ? this.startX : this.startY;

		switch (this.direction )

		{

		case "left":   

		case "right" : newX = rf*Math.cos(t)*rx + this.ele.ABSX; break;

		case "up":	   

		case "down" :  newY = rf*Math.cos(t)*rx + this.ele.ABSX; break;

		}

		CCSSP.MoveObjectTo(this.ele, newX, newY);

		CCSSP.SetTimer(this,20);

	}

}



CAgencyElastic.prototype.EndEffect = function()

{

	CCSSP.MoveObjectTo(this.ele, this.finalX, this.finalY);

	clearInterval( this.timer );

	this.timer = null;

}



CAgencyElastic.prototype.ResetParameters = function()

{

	CCSSP.ShowObject(this.ele, true );

	this.startX = this.ele.ABSX;

	this.finalX = this.ele.ABSX;

	this.startY = this.ele.ABSY;

	this.finalY = this.ele.ABSY;

	

	switch (this.direction)

	{ 

	case "left":  this.startX = -this.ele.offsetWidth; break;

	case "right": this.startX = this.ele.offsetWidth;  break;

	case "up":    this.startY = -this.ele.offsetHeight;break;

	case "down":  this.startY = this.ele.offsetHeight; break;

	}

	CCSSP.MoveObjectTo(this.ele, this.startX, this.startY);

	this.startTime = (new Date()).getTime();

}

// End of CAgencyElastic



// Begin of CAgencyZoom

function CAgencyZoom( element, settings, bIsIn)

{

	this.ele = element;

	this.duration = 1000; // default

	

	var arrAllSet = settings.split(",");

	for( var i = 0; i < arrAllSet.length; i ++ )

	{// to retrieve the setting

		arrAllSet[i] = CCSSP.TrimSpace(arrAllSet[i]);

		var arrOneSet = arrAllSet[i].split("=");

		for( var j = 0; j < arrOneSet.length; j++ )

			arrOneSet[j] = CCSSP.TrimSpace(arrOneSet[j]);

		switch( arrOneSet[0] )

		{

		case "speed" : this.duration = 100000/arrOneSet[1]; break;

		}

	}



	this.bIsIn = bIsIn;

	this.timer = null;

	this.aniIndex = CEngine.arrAnimation.length;

	CEngine.arrAnimation[this.aniIndex] = this;

}



CAgencyZoom.prototype.PrepareEffect = function()

{

	CCSSP.ShowObject(this.ele, false);

}



CAgencyZoom.prototype.UpdateEffect = function()

{

	if( this.timer == null )

		this.ResetParameters();



	var percent = ((new Date()).getTime() - this.startTime)/this.duration;

	if( percent >= 1.0 )

		this.EndEffect();

	else

	{

		var nFactorIn = Math.ceil(50+50*percent);

		var nFactorOut = Math.ceil(100+200*(1-percent));

		var AlterFontsize = ((this.bIsIn)? nFactorIn : nFactorOut) + "%";

		var AlterFactor = ((this.bIsIn)? nFactorIn : nFactorOut) / 100;

		

		this.UpdateEffectAllChildren(this.ele, AlterFontsize, AlterFactor);

		var arr ;

		if (this.ele.all)

		    arr = this.ele.all ;

		else

		    arr = this.ele.getElementsByTagName ('*');

		for(var index = 0; index < arr.length; index++)

			this.UpdateEffectAllChildren(arr[index], AlterFontsize, AlterFactor);

			

		CCSSP.SetTimer(this,20);

	}

}



CAgencyZoom.prototype.UpdateEffectAllChildren = function(child, FontSize, Factor)

{

	if( CCSSP.IsTextTag(child) )

		child.style.fontSize = FontSize;

	else

	{

		if( typeof(child.orgWidth) == "number" )

			child.style.width = Factor * child.orgWidth;

		if( typeof(child.orgHeight) == "number" )

			child.style.height = Factor * child.orgHeight;

	}

}



CAgencyZoom.prototype.EndEffect = function()

{

	this.EndEffectAllChildren(this.ele);

	var arr ;

	if(this.ele.all)

	    arr = this.ele.all ;

	else

	    arr = this.ele.getElementsByTagName('*');

	for(var index = 0; index < arr.length; index++)

		this.EndEffectAllChildren(arr[index]);

	

	clearInterval( this.timer );

	this.timer = null;

}



CAgencyZoom.prototype.EndEffectAllChildren = function( child )

{	

	if( CCSSP.IsTextTag(child) )

		child.style.fontSize = child.orgFontSize;

	else

	{

		if( typeof(child.intactWidth) != "undefined" )

		{

			child.width = child.intactWidth;

			child.height = child.intactHeight;

		}

		else if( typeof(child.style.intactPixelWidth) != "undefined" )

		{

			child.style.pixelWidth = child.style.intactPixelWidth;

			child.style.pixelHeight = child.style.intactPixelHeight;

		}

	}

}



CAgencyZoom.prototype.ResetParameters = function()

{

	this.PrepareEffect();

	this.ResetParametersAllChildren( this.ele );

	var arr ;

	if (this.ele.all)

	    arr = this.ele.all ;

	else

	    arr = this.ele.getElementsByTagName('*');

	for(var index = 0; index < arr.length; index++)

		this.ResetParametersAllChildren(arr[index]);

		

	this.startTime = (new Date()).getTime();

}



CAgencyZoom.prototype.ResetParametersAllChildren = function( child )

{

	CCSSP.ShowObject(child, true );

	if( (child.tagName == "DIV") && (getParentNode(child).tagName == "TD") )

		child.width = "100%";// if the div is inside a cell of table, we need the this hack

	

	if( CCSSP.IsTextTag(child) )

		child.orgFontSize = child.style.fontSize;

	else

	{

		if( child.width > "" || child.height > "" )

		{

			child.orgWidth = child.intactWidth = child.width;

			child.orgHeight = child.intactHeight = child.height;

		}

		else if( ( typeof(child.orgWidth) != "number" ) && (typeof(child.orgHeight) != "number") )

		{

			child.orgWidth = child.style.intactPixelWidth = child.style.pixelWidth;

			child.orgHeight = child.style.intactPixelHeight = child.style.pixelHeight;

		}

	}

}

// End of CAgencyZoom



//// the following effects will use IE's exclusive "filter" function ////

// Begin of CAgencyAlpha definition

function CAgencyAlpha( element, settings, bIsIn )

{// because of "visual filter" style, this won't work in Navigator

	this.ele = element;

	this.bIsIn = bIsIn;



	// to set the default value

	this.startOpacity = (this.bIsIn) ? 0 : 100;

	this.endOpacity = (this.bIsIn) ? 100 : 0;

	

	this.duration = 1000; // default

	

	var arrAllSet = settings.split(",");

	for( var i = 0; i < arrAllSet.length; i ++ )

	{// to retrieve the setting

		arrAllSet[i] = CCSSP.TrimSpace(arrAllSet[i]);

		var arrOneSet = arrAllSet[i].split("=");

		for( var j = 0; j < arrOneSet.length; j++ )

			arrOneSet[j] = CCSSP.TrimSpace(arrOneSet[j]);

		switch( arrOneSet[0] )

		{

		case "speed" : this.duration = 100000/arrOneSet[1]; break;

		}

	}

	

	this.timer = null;

	this.aniIndex = CEngine.arrAnimation.length;

	CEngine.arrAnimation[this.aniIndex] = this;

}



CAgencyAlpha.prototype.PrepareEffect = function()

{// to set the visual filter function

	// the visual filter ONLY work when set by "Width and Height" or

	// absolute position for DIV, SPAN and normal tag ( such as p )

	// but, "absolute" cause the following elements overlap, so:

	CCSSP.PrepareFilter( this.ele );

	CCSSP.ShowObject(this.ele, !this.bIsIn );

}



CAgencyAlpha.prototype.UpdateEffect = function()

{// to set the visual filter function

	if( this.timer == null )

		this.ResetParameters();

	if( typeof(this.ele.filters.alpha) != "object" )

	{

		this.EndEffect();

		return;

	}



	var percent = ((new Date()).getTime() - this.startTime)/this.duration;

	if( percent >= 1.0 )

		this.EndEffect();

	else if( typeof(this.ele.filters.alpha) == "object" )

	{

		this.ele.filters.alpha.opacity = this.startOpacity*(1.0-percent) + this.endOpacity*percent;

		CCSSP.SetTimer(this,20);

	}

}



CAgencyAlpha.prototype.EndEffect = function()

{// to remove the visual filter function

	clearInterval( this.timer );

	this.timer = null;

	this.ele.style.filter = "";

	CCSSP.ShowObject(this.ele, this.bIsIn );

}



CAgencyAlpha.prototype.ResetParameters = function()

{

	this.PrepareEffect();

	CCSSP.ShowObject(this.ele, true );

	this.ele.style.filter = "alpha(opacity=" + this.startOpacity + ")";

	this.startTime = (new Date()).getTime();

}

// End of the CAgencyAlpha definition



// Begin of CAgencyWave definition

function CAgencyWave( element, settings )

{// because of "visual filter" style, this won't work in Navigator

	this.ele = element;



	this.duration = 0; // default

	this.strength = 10;

	this.freq = 1;

	this.lightstrength = 1;

	

	var arrAllSet = settings.split(",");

	for( var i = 0; i < arrAllSet.length; i ++ )

	{// to retrieve the setting

		arrAllSet[i] = CCSSP.TrimSpace(arrAllSet[i]);

		var arrOneSet = arrAllSet[i].split("=");

		for( var j = 0; j < arrOneSet.length; j++ )

			arrOneSet[j] = CCSSP.TrimSpace(arrOneSet[j]);

		switch( arrOneSet[0] )

		{

		case "duration" : this.duration = 100000/arrOneSet[1]; break;

		case "strength" : this.strength = arrOneSet[1]; break;

		case "freq" : this.freq = arrOneSet[1]; break;

		case "lightstrength" : this.lightstrength = arrOneSet[1]; break;

		}

	}



	this.timer = null;

	this.aniIndex = CEngine.arrAnimation.length;

	CEngine.arrAnimation[this.aniIndex] = this;

}



CAgencyWave.prototype.PrepareEffect = function()

{// to set the visual filter function

	CCSSP.PrepareFilter(this.ele);



	CCSSP.ShowObject(this.ele, true );

}



CAgencyWave.prototype.UpdateEffect = function()

{// to set the visual filter function

	if( this.timer == null )

		this.ResetParameters();

	if( (typeof(this.ele.filters) == "undefined") || (typeof(this.ele.filters.wave) != "object" ) )

	{

		this.EndEffect();

		return;

	}



	if( this.duration > 0 )

	{

		var percent = ((new Date()).getTime() - this.startTime)/this.duration;

		if( percent >= 1.0 )

		{

			this.EndEffect();

			return;

		}

	}

	

	this.ele.filters.wave.phase += 5;

	this.ele.filters.wave.phase %= 100;

	CCSSP.SetTimer(this,50);

}



CAgencyWave.prototype.EndEffect = function()

{// to remove the visual filter function

	this.ele.style.filter = "";

	clearInterval( this.timer );

	this.timer = null;

}



CAgencyWave.prototype.ResetParameters = function()

{

	this.PrepareEffect();

	this.ele.style.filter = "wave(strength=" + this.strength + ",freq=" + 

	 this.freq +", lightstrength=" + this.lightstrength +",phase=0);";

	this.startTime = (new Date()).getTime();

}

// End of the CAgencyWave definition



// Begin of CAgencyGlow definition

function CAgencyGlow( element, settings )

{// because of "visual filter" style, this won't work in Navigator

	this.ele = element;



	// to set the default value

	this.glowColor = "green";

	this.glowStrength = "3";

	

	var arrAllSet = settings.split(",");

	for( var i = 0; i < arrAllSet.length; i ++ )

	{

		arrAllSet[i] = CCSSP.TrimSpace(arrAllSet[i]);

		var arrOneSet = arrAllSet[i].split("=");

		for( var j = 0; j < arrOneSet.length; j++ )

			arrOneSet[j] = CCSSP.TrimSpace(arrOneSet[j]);

		switch( arrOneSet[0] )

		{

		case "color" : this.glowColor = arrOneSet[1]; break;

		case "strength" : this.glowStrength = arrOneSet[1]; break;

		}

	}

}



CAgencyGlow.prototype.PrepareEffect = function()

{

	CCSSP.PrepareFilter(this.ele);

	CCSSP.ShowObject(this.ele, true );

	if( this.ele.style.backgroundColor != "" )

	{//style.backgroundColor somehow stop the visual filter

		this.ele.intactBackgroundColor = this.ele.style.backgroundColor;

		this.ele.style.backgroundColor = "";

	}

}



CAgencyGlow.prototype.UpdateEffect = function()

{// to set the visual filter function

	this.PrepareEffect();

	this.ele.style.filter = "glow(Color=" + this.glowColor + ", Strength=" + 

		this.glowStrength + ", enabled=true" +")";

}



CAgencyGlow.prototype.EndEffect = function()

{// to remove the visual filter function

	this.ele.style.filter = "";

	if( typeof(this.ele.intactBackgroundColor) != "undefined" )

		this.ele.style.backgroundColor = this.ele.intactBackgroundColor;

}

// End of the CAgencyGlow definition



// Begin of CAgencyDropShadow definition

function CAgencyDropShadow( element, settings )

{// because of "visual filter" style, this won't work in Navigator

	this.ele = element;



	// to set the default value

	this.shadowColor = "black"; 

	this.shadowOffx = "1";

	this.shadowOffy = "1";

	

	var arrAllSet = settings.split(",");

	for( var i = 0; i < arrAllSet.length; i ++ )

	{

		arrAllSet[i] = CCSSP.TrimSpace(arrAllSet[i]);

		var arrOneSet = arrAllSet[i].split("=");

		for( var j = 0; j < arrOneSet.length; j++ )

			arrOneSet[j] = CCSSP.TrimSpace(arrOneSet[j]);

		switch( arrOneSet[0] )

		{

		case "color" : this.shadowColor = arrOneSet[1]; break;

		case "offx" : this.shadowOffx = arrOneSet[1]; break;

		case "offy" : this.shadowOffy = arrOneSet[1]; break;

		}

	}

}



CAgencyDropShadow.prototype.PrepareEffect = function()

{

	CCSSP.PrepareFilter(this.ele);

	CCSSP.ShowObject(this.ele, true );

	

	if( this.ele.style.backgroundColor != "" )

	{//style.backgroundColor somehow stop the visual filter

		this.ele.intactBackgroundColor = this.ele.style.backgroundColor;

		this.ele.style.backgroundColor = "";

	}

}



CAgencyDropShadow.prototype.UpdateEffect = function()

{// to set the visual filter function

	this.PrepareEffect();

	this.ele.style.filter = "dropshadow(color=" + this.shadowColor + ", offx=" + 

		this.shadowOffx + ", offy=" + this.shadowOffy + ")";

}



CAgencyDropShadow.prototype.EndEffect = function()

{// to remove the visual filter function

	this.ele.style.filter = "";

	if( typeof(this.ele.intactBackgroundColor) != "undefined" )

		this.ele.style.backgroundColor = this.ele.intactBackgroundColor;

}

// End of the CAgencyDropShadow definition



// Begin of CAgencyRevealTrans definition

function CAgencyRevealTrans( element, settings )

{// because of "visual filter" style, this won't work in Navigator

	this.ele = element;



	// to set the default value

	this.duration = 1.0; //The value is specified in seconds.milliseconds format (0.0000).

	this.transition = 0;

	

	var arrAllSet = settings.split(",");

	for( var i = 0; i < arrAllSet.length; i ++ )

	{

		arrAllSet[i] = CCSSP.TrimSpace(arrAllSet[i]);

		var arrOneSet = arrAllSet[i].split("=");

		for( var j = 0; j < arrOneSet.length; j++ )

			arrOneSet[j] = CCSSP.TrimSpace(arrOneSet[j]);

		switch( arrOneSet[0] )

		{

		case "type" : this.transition = arrOneSet[1]; break;

		case "duration" : this.duration = 100/arrOneSet[1];	break;

		}

	}

}



CAgencyRevealTrans.prototype.PrepareEffect = function()

{

	CCSSP.PrepareFilter(this.ele);

	CCSSP.ShowObject( this.ele, false);

}



CAgencyRevealTrans.prototype.UpdateEffect = function()

{// to set the visual filter function

	if( typeof( this.ele.filters.RevealTrans ) == "object" )

	{

		if( this.ele.filters.RevealTrans.status == 2 )

			this.ele.filters.RevealTrans.stop();  

	}



	this.PrepareEffect();

	

	this.ele.style.filter = "RevealTrans(duration=" + this.duration + 

		", transition=" + this.transition + ")";

	

    if( typeof( this.ele.filters.RevealTrans ) == "object" )

    {

		this.ele.filters.RevealTrans.apply();

		CCSSP.ShowObject( this.ele, true);

		this.ele.filters.RevealTrans.play();  

	}

	else

		CCSSP.ShowObject( this.ele, true);

}



CAgencyRevealTrans.prototype.EndEffect = function()

{

    if( typeof( this.ele.filters.RevealTrans ) == "object" )

		this.ele.filters.RevealTrans.stop();  

	this.ele.style.filter = "";

}

// End of the CAgencyRevealTrans definition



// Begin of CAgencyBlur definition

function CAgencyBlur( element, settings )

{// because of "visual filter" style, this won't work in Navigator

	this.ele = element;



	// to set the default value

	this.strength = "5";

	this.direction = "90";

	

	var arrAllSet = settings.split(",");

	for( var i = 0; i < arrAllSet.length; i ++ )

	{

		arrAllSet[i] = CCSSP.TrimSpace(arrAllSet[i]);

		var arrOneSet = arrAllSet[i].split("=");

		for( var j = 0; j < arrOneSet.length; j++ )

			arrOneSet[j] = CCSSP.TrimSpace(arrOneSet[j]);

		switch( arrOneSet[0] )

		{

		case "strength" : this.strength = arrOneSet[1]; break;

		case "direction" : this.direction = arrOneSet[1]; break;

		}

	}

}



CAgencyBlur.prototype.PrepareEffect = function()

{

	CCSSP.PrepareFilter(this.ele);

	CCSSP.ShowObject(this.ele, true );

}



CAgencyBlur.prototype.UpdateEffect = function()

{// to set the visual filter function

	CCSSP.PrepareFilter(this.ele);

	this.ele.style.filter = "blur(strength=" + this.strength + 

		", direction=" + this.direction + ")";

}



CAgencyBlur.prototype.EndEffect = function()

{// to remove the visual filter function

	this.ele.style.filter = "";

}

// End of the CAgencyBlur definition



// Begin of CAgencyChangeFilter definition

function CAgencyChangeFilter( element, settings ) // flipH, flipV, invert, grey,

{// because of "visual filter" style, this won't work in Navigator

	this.ele = element;



	// to set the default value

	this.filterFunction = settings;

}



CAgencyChangeFilter.prototype.PrepareEffect = function()

{

	CCSSP.PrepareFilter(this.ele);

	CCSSP.ShowObject(this.ele, true );

}



CAgencyChangeFilter.prototype.UpdateEffect = function()

{// to set the visual filter function

	CCSSP.PrepareFilter(this.ele);

	this.ele.style.filter = this.filterFunction;

}



CAgencyChangeFilter.prototype.EndEffect = function()

{// to remove the visual filter function

	this.ele.style.filter = "";

}

// End of the CAgencyChangeFilter definition



// The effects below change the style on the fly, so they won't work in Navigator



// Begin of CAgencyFontChange definition, 

function CAgencyFontChange( element, settings )

{//this class can be replace by CAgencyChangeStyle,provided the "settings" is standard CSS string.

	this.ele = element;

	

	// to retrieve the original font style

	this.RetrieveOldFont( this.ele );

	

	// to set the default font to change

	this.newfontFamily = this.ele.oldFontFamily;

	this.newfColor = this.ele.oldColor;

	this.newtextDecoration = this.ele.oldTextDecoration;

	this.newfontWeight = this.ele.oldFontWeight;

	this.newfontStyle = this.ele.oldFontStyle;

	this.newfontSize = this.ele.oldFontSize;

	this.newBackgroundColor = this.ele.oldBackgroundColor;

	

	var arrAllSet = settings.split(",");

	for( var i = 0; i < arrAllSet.length; i ++ )

	{// to retrieve the setting

		arrAllSet[i] = CCSSP.TrimSpace(arrAllSet[i]);

		var arrOneSet = arrAllSet[i].split("=");

		for( var j = 0; j < arrOneSet.length; j++ )

			arrOneSet[j] = CCSSP.TrimSpace(arrOneSet[j]);

		switch( arrOneSet[0] )

		{

		case "font-family" : this.newfontFamily = arrOneSet[1]; break;

		case "color" : this.newfColor = arrOneSet[1]; break;

		case "underline" : this.newtextDecoration = (arrOneSet[1]=="on")? "underline" : "none"; break;

		case "bold" : this.newfontWeight = (arrOneSet[1]=="on")? "bold" : "normal"; break;

		case "italic" : this.newfontStyle = (arrOneSet[1]=="on")? "italic" : "normal"; break;

		case "size" : this.newfontSize = arrOneSet[1]; break;

		case "background-color" : this.newBackgroundColor = arrOneSet[1]; break;

		}

	}

}



CAgencyFontChange.prototype.RetrieveOldFont = function(objChild)

{

	if( typeof(objChild.oldFontFamily) == "undefined" )

		objChild.oldFontFamily = objChild.style.fontFamily;

	if( typeof(objChild.oldColor) == "undefined" )

		objChild.oldColor = objChild.style.color;

	if( typeof(objChild.oldTextDecoration) == "undefined" )

		objChild.oldTextDecoration = objChild.style.textDecoration;

	if( typeof(objChild.oldFontWeight) == "undefined" )

		objChild.oldFontWeight = objChild.style.fontWeight;

	if( typeof(objChild.oldFontStyle) == "undefined" )

		objChild.oldFontStyle = objChild.style.fontStyle;

	if( typeof(objChild.oldFontSize) == "undefined" )

		objChild.oldFontSize = objChild.style.fontSize;

	if( typeof(objChild.oldBackgroundColor) == "undefined" )

		objChild.oldBackgroundColor = objChild.style.backgroundColor;

}



CAgencyFontChange.prototype.PrepareEffect = function()

{

	// as for expanding text, the child is created after the constructor called

	var arr = this.ele.getElementsByTagName ('*');

	for(var index = 0; index < arr.length; index++)

		this.RetrieveOldFont(arr[index]);

	CCSSP.ShowObject(this.ele, true );

}



CAgencyFontChange.prototype.UpdateEffect = function()

{// to change the font

	this.PrepareEffect();

	this.UpdateEffectAllChildren( this.ele );

	var arr = this.ele.getElementsByTagName ('*');

	for( var index = 0; index < arr.length; index++)

		this.UpdateEffectAllChildren(arr[index]);

}



CAgencyFontChange.prototype.UpdateEffectAllChildren = function(objChild)

{

	objChild.style.fontFamily = this.newfontFamily;

	objChild.style.color = this.newfColor;

	objChild.style.textDecoration = this.newtextDecoration;

	objChild.style.fontWeight = this.newfontWeight;

	objChild.style.fontStyle = this.newfontStyle;

	objChild.style.fontSize = this.newfontSize;

	objChild.style.backgroundColor = this.newBackgroundColor;

}



CAgencyFontChange.prototype.EndEffect = function()

{// to reinstate the original font style

	this.EndEffectAllChildren( this.ele );

	var arr = this.ele.getElementsByTagName ('*');

	for( var index = 0; index < arr.length; index++)

		this.EndEffectAllChildren(arr[index]);

}



CAgencyFontChange.prototype.EndEffectAllChildren = function( objChild )

{

	if( typeof(objChild.oldFontFamily) != "undefined" )

		objChild.style.fontFamily = objChild.oldFontFamily;

	if( typeof(objChild.oldColor) != "undefined" )

		objChild.style.color = objChild.oldColor;

	if( typeof(objChild.oldFontWeight) != "undefined" )

		objChild.style.fontWeight = objChild.oldFontWeight;

	if( typeof(objChild.oldFontStyle) != "undefined" )

		objChild.style.fontStyle = objChild.oldFontStyle;

	if( typeof(objChild.oldFontSize) != "undefined" )

		objChild.style.fontSize = objChild.oldFontSize;

	if( typeof(objChild.oldTextDecoration) != "undefined" )

		objChild.style.textDecoration = objChild.oldTextDecoration;

	if( typeof(objChild.oldBackgroundColor) != "undefined" )

		objChild.style.backgroundColor = objChild.oldBackgroundColor;

}

// End of the CAgencyFontChange definition



// Begin of the CAgencyChangeStyle definition

function CAgencyChangeStyle( element, settings )

{//this class can be replace by CAgencyChangeStyle,provided the "settings" is standard CSS string.

	this.ele = element;

	

	// to retrieve the original style

	this.oldstyle = this.ele.style.cssText;

	

	// to set the default style

	this.newStyle = this.oldstyle;

	

	if( typeof(settings) == "string" && settings.length > 1 )

		this.newStyle = this.oldstyle + " " + settings;

}



CAgencyChangeStyle.prototype.PrepareEffect = function()

{

	CCSSP.ShowObject(this.ele, true );

}



CAgencyChangeStyle.prototype.UpdateEffect = function()

{// to change the style

	this.ele.style.cssText = this.newStyle;

}



CAgencyChangeStyle.prototype.EndEffect = function()

{// to reinstate the original style

	this.ele.style.cssText = this.oldStyle;

}

// End of the CAgencyChangeStyle definition



//End the definition of CAgencyXXXX classes



//Begin to collaborate with other event handler settings 

CCSSP.RegisterEventHandler( window, "onload", "CEngine.OnPageLoad(event);BSSCOnLoad(event);InitTriggersInHead(event);");

CCSSP.RegisterEventHandler( document, "onclick", "CEngine.OnPageClick(event);BSSCOnClick(event);");

CCSSP.RegisterEventHandler( document, "onmouseover", "CEngine.OnMouseOver(event);BSSCOnMouseOver(event);" );

CCSSP.RegisterEventHandler( document, "onmouseout", "CEngine.OnMouseOver(event);BSSCOnMouseOut(event);" );

CCSSP.RegisterEventHandler( window, "onunload", "BSSCOnUnload();");







// function related to autosize popup, custom popup and textonly popup

var gMsgSeparator = "::";



function isInsidePopup()

{

	return (window.name.indexOf("BSSCPopup")!=-1);

}



if(isLocal && (gbChrome || gbBsNS6))

{

	if(window.addEventListener)

		window.addEventListener("message", onRcvContentSizeMsg, false);

}



function getDocHeight(D) {

    return Math.max(

        Math.max(D.body.scrollHeight, D.documentElement.scrollHeight),

        Math.max(D.body.offsetHeight, D.documentElement.offsetHeight),

        Math.max(D.body.clientHeight, D.documentElement.clientHeight)

    );

}



function getDocWidth(D) {

    return Math.max(

        Math.max(D.body.scrollWidth, D.documentElement.scrollWidth),

        Math.max(D.body.offsetWidth, D.documentElement.offsetWidth),

        Math.max(D.body.clientWidth, D.documentElement.clientWidth)

    );

}



function trim(stringToTrim) {

	return stringToTrim.replace(/^\s+|\s+$/g,"");

}



function parseMsgData(strData)

{

	var nvPairs = strData.split(","); //get name value pairs

	if(nvPairs.length>0)

	{

		var obj = new Object();

		for(var i=0; i<nvPairs.length; i++)

		{

			trim(nvPairs[i]);

			var nvPair = nvPairs[i].split(":");

			if(nvPair.length == 2)

			{

				obj[nvPair[0]] = nvPair[1];

			}

		}

		return obj;

	}

	return null;

}





function replyContentSize(targetWnd)

{

	targetWnd.postMessage("sendContentSize" + gMsgSeparator + ",height:" + getDocHeight(document) + ",width:" + getDocWidth(document), "*");

}







var	gLastHeight = 0;

var	gLastWidth = 0;

function onRcvContentSizeMsg(event)

{

    var msg = event.data.split(gMsgSeparator);

    var msgType = msg[0];

    var msgData = msg[1];

    switch(msgType)

    {

    case "sendContentSize":

	    {

	       		var  	stepSize = 50;

			

			var obj  = parseMsgData(msgData);

	       		rhPopupEx.setHeight(parseInt(obj.height));

			rhPopupEx.setWidth(parseInt(obj.width));

			

			if(typeof(rhPopupEx.gLastGoodHeight) == 'undefined' || rhPopupEx.gLastGoodHeight == 0)

			{

				rhPopupEx.gLastGoodHeight = rhPopupEx.height;

				rhPopupEx.gLastGoodWidth = rhPopupEx.width;

			}

			else

			{

				if(rhPopupEx.height < gLastHeight) 

				{

					rhPopupEx.gLastGoodHeight = rhPopupEx.height;

					rhPopupEx.gLastGoodWidth = rhPopupEx.width;

				}

			}



			if(rhPopupEx.canDoBetter())

			{

				gLastWidth = rhPopupEx.width;

				gLastHeight = rhPopupEx.height;

				

				rhPopupEx.resizePopup(rhPopupEx.width+stepSize, 1);

				requestContentSize(event.source);

				

			}

			else{

				rhPopupEx.setHeight(rhPopupEx.gLastGoodHeight);

				rhPopupEx.setWidth(rhPopupEx.gLastGoodWidth);

				rhPopupEx.gLastGoodHeight = 0;

				rhPopupEx.gLastGoodWidth = 0;

				gLastHeight = 0;

				gLastWidth = 0;

				rhPopupEx.resizeMoveAndShowPopup();

			}

	    }

	break;

     case "getContentSize":

	replyContentSize(event.source);

        break;

     case "updateLinks":

	BSSCPopup_ChangeTargettoParent(document);

	break;

     case "getCpHTML5Size":

	replyCpHTML5Size(event.source, msgData);

	break;

     case "setCpHTML5Size":

	onGetReplyCpHTML5Size(event.source, msgData);

	break;

    }

}



function requestContentSize(targetWnd)

{

	if(targetWnd && targetWnd.postMessage)

		targetWnd.postMessage("getContentSize" + gMsgSeparator + " ", "*");

}



function requestUpdateLinks(targetWnd)

{

	if(targetWnd && targetWnd.postMessage)

		targetWnd.postMessage("updateLinks" + gMsgSeparator + " ", "*");

}



function onPopupClicked(e)

{

	var target = null;

	var popupIFrame = rhPopupEx.getPopupIFrame();

	if(!e) 

		e = popupIFrame.contentWindow.event;

	if(e)

	{

		if(e.target)

			target = e.target;

		else 

			target = e.srcElement;

	}

	if(!gbAIR)

	{

		if(target && isInsideHyperLink(target))

			return;

	}

	if(window.removeEventListener)

		window.removeEventListener("mousedown", onPopupParentClicked, false);

	else if(window.document.detachEvent)

		window.document.detachEvent('onmousedown', onPopupParentClicked);

	rhPopupEx.removePopup();

}



function onPopupParentClicked(e)

{

	if(window.removeEventListener)

		window.removeEventListener("mousedown", onPopupParentClicked, false);

	else if(window.document.detachEvent)

		window.document.detachEvent('onmousedown', onPopupParentClicked);

	rhPopupEx.removePopup();

}



var rhPopupEx = new RHPopupEx;

function RHPopupEx()

{

	this.strPopupID = 'BSSCPopup';

	this.strPopupShadowID = 'BSSCPopupShadow';

	this.strPopupTopicID = 'BSSCPopupTopic';

	this.strPopupIFrameID = 'BSSCPopupIFrame';

	this.strPopupIFrameName = 'BSSCPopupIFrameName';

	this.strPopupURL = '';

	this.strBookmark = '';

	this.width = 0;

	this.height = 0;

	this.clientWidth = 0;

	this.clientHeight = 0;

	this.gHeight = 0;

	this.gWidth = 0;

	this.bCustomHeight = false;



	//scrollbar height and width

	this.scrollbarheight = 20; //can we ask the browser for this info

	this.scrollbarwidth = 20;



	this.init = function()

	{

		this.getVisibilityStyle();

		this.strPopupURL = '';

		this.strBookmark = '';

		this.width = 0;

		this.height = 0;

		this.clientWidth = 0;

		this.clientHeight = 0;

		this.gHeight = 0;

		this.gWidth = 0;

		this.removePopup();

	}



	this.setPopupURL = function(strURL)

	{

		var indx = strURL.indexOf("#");

		if(indx != -1)

		{

			this.strPopupURL = strURL.substring(0, indx);

			this.strBookmark = strURL.substring(indx);

		}

		else

			this.strPopupURL = strURL;

	}

	this.setWidth = function(width)

	{

		this.width = width;

	}

	this.setHeight = function(height)

	{

		this.height = height;

	}

	this.setClickPosition= function(x, y)

	{

		this.clickX = x + getScrollLeft();

		this.clickY = y + getScrollTop();

	}



	this.createPopup= function(strURL, width, height)

	{

		this.init();

		if ("undefined" != typeof(width) && "undefined" != typeof(height)) {

			this.setWidth(width);

			this.setHeight(height);

			this.bCustomHeight = true;

		}

		if(typeof(strURL) == 'undefined' || strURL == '')

			return false;

		this.setPopupURL(strURL);

		this.createPopupContainer();

	}



	this.createPopupContainer = function()

	{

		// DO NOT SET Width and height for the div, otherwize it will make IE4 popup do not work when view the topic alone.

		var strPopupDiv = "<div id='" + this.strPopupID + "' style='position:absolute; top:-100; left:0; z-index:600; visibility:hidden;'>";

		strPopupDiv += "<div id='" + this.strPopupShadowID + "' style=\"position:absolute;top:0; left:0; background-color:#C0C0C0;\"></div>";

		strPopupDiv += "<div id='" + this.strPopupTopicID + "' style=\"position:absolute;top:0; left:0;  background-color:#FFFFFF;border:1px #000000 outset;"; 

		if(gbSafari3 && gbBsIsMobile)

			strPopupDiv += "overflow:auto; -webkit-overflow-scrolling:touch;";

		strPopupDiv += "\">";

		strPopupDiv += "<iframe height=\"10px\" width=\"200px\" title=\"Popup Window\" id='" + this.strPopupIFrameID + "' name='" + this.strPopupIFrameName + "' src='" + this.strPopupURL + "' frameborder=0 scrolling=auto";

		strPopupDiv += " onload=\"rhPopupEx.OnLoadRHPopup();\"";

		strPopupDiv += "></iframe></div>";  

		strPopupDiv += "</div>";



		var oBody = getElementsByTag(document, "body")[0];

		if( typeof(oBody) != "object" )

			return;



		insertAdjacentHTML(oBody, "beforeEnd", strPopupDiv);

	}



	this.removePopup = function()

	{

		var popup = this.getPopupContainer();

		if(popup)

			removeThis(popup);

	}



	this.getPopupContainer = function()

	{

		var elem  = document.getElementById(this.strPopupID);

		if(typeof(elem) != 'undefined' && elem != null)

			return elem;

		return null;

	}

	this.getPopupIFrame = function()

	{

		var elem  = document.getElementById(this.strPopupIFrameID);

		if(typeof(elem) != 'undefined' && elem != null)

			return elem;

		return null;

	}

	this.getPopupShadow = function()

	{

		var elem  = document.getElementById(this.strPopupShadowID);

		if(typeof(elem) != 'undefined' && elem != null)

			return elem;

		return null;

	}

	this.getPopupTopic = function()

	{

		var elem  = document.getElementById(this.strPopupTopicID);

		if(typeof(elem) != 'undefined' && elem != null)

			return elem;

		return null;

	}



	this.hidePopup = function()

	{

		this.getPopupContainer().style.visibility = this.strStyVisHide;

		this.getPopupIFrame().style.visibility = this.strStyVisHide;

	}



	this.showPopup = function()

	{

		this.getPopupContainer().style.visibility = this.strStyVisShow;

		this.getPopupIFrame().style.visibility = this.strStyVisShow;

	}



	this.getVisibilityStyle = function()

	{

		if (gbBsNS4&&!gbBsNS6)

		{

			this.strStyVisShow	= "show";

			this.strStyVisHide	= "hide";

		}

		else

		{

			this.strStyVisShow	= "visible";

			this.strStyVisHide	= "hidden";

		}

	}



	this.getClientWndSize = function () {

	    var viewportwidth;

	    var viewportheight;



	    // the more standards compliant browsers (mozilla/netscape/opera/IE7) use window.innerWidth and window.innerHeight

	    if (typeof window.innerWidth != 'undefined') {

	        viewportwidth = window.innerWidth;

	        viewportheight = window.innerHeight;

	    }

	    // IE6 in standards compliant mode (i.e. with a valid doctype as the first line in the document)

	    else if (typeof document.documentElement != 'undefined'

         && typeof document.documentElement.clientWidth != 'undefined' && document.documentElement.clientWidth != 0) {

	        viewportwidth = document.documentElement.clientWidth;

	        viewportheight = document.documentElement.clientHeight;

	    }

	    // older versions of IE

	    else {

	        viewportwidth = document.getElementsByTagName('body')[0].clientWidth;

	        viewportheight = document.getElementsByTagName('body')[0].clientHeight;

	    }

	    this.clientWidth = viewportwidth;

	    this.clientHeight = viewportheight;

	    //golden ratio

	    this.gHeight = this.clientHeight * 0.8;

	    this.gWidth = this.clientWidth * 0.8;

	    

	    this.clientWidth -= this.scrollbarwidth;

	    this.clientHeight -= this.scrollbarheight; 

	}



	this.resizePopup = function(width, height)

	{

		//set height and width

		this.getPopupContainer().style.width = width + "px" ;

		this.getPopupContainer().style.height = height + "px" ;

	

		this.getPopupShadow().style.width = width + "px" ;

		this.getPopupShadow().style.height = height + "px" ;	

	

    		this.getPopupTopic().style.width = width + "px" ;

		this.getPopupTopic().style.height = height + "px" ;

	

		this.getPopupIFrame().style.width = width + "px" ;

		this.getPopupIFrame().style.height = height + "px" ;

	}



	this.getPopupContentSize = function()

	{

		var wnd = this.getPopupIFrame().contentWindow;

		this.setHeight(getDocHeight(wnd.document));

		this.setWidth(getDocWidth(wnd.document));

	}



	this.canDoBetter = function()

	{

		if(this.width < this.gWidth /*&& this.height > this.gHeight*/)

			return true;

	}



	this.computePopupWndSize = function()

	{

		if(!gbChromeLocal)

		{

			try

			{

				this.getPopupContentSize();



			//try to check if we have available width, increasing the width may decrease the height for reflowable content

			//whenever a change is detected we save that size

			//increasing width by an amount does not always decrease height, but increasing further may decrease it based on the 

			//reflow content

			

			var  	stepSize = 50;

			var	lastWidth = 0;

			var	lastHeight = 0;

			var lastGoodHeight = this.height;

			var lastGoodWidth = this.width;



			while(this.canDoBetter())

			{

				lastWidth = this.width;

				lastHeight = this.height;

				this.resizePopup(this.width+stepSize, 1);

				this.getPopupContentSize();

				//if no change in height detected

				if(this.height < lastHeight) //may be there is no reflow content to reduce height on increasing width

				{

					lastGoodHeight = this.height;

					lastGoodWidth = this.width;

					

				}

				//alert("height = " + this.height + "width=" + this.width)

			}



			//adding extra 20 pixel in height to be sure no scroll bar comes even if content fits in size computed

			lastGoodHeight += 20;

			//adding extra 5 pixel in width

			lastGoodWidth += 5;



			this.setHeight(lastGoodHeight);

			this.setWidth(lastGoodWidth);



			this.resizeMoveAndShowPopup();

			}

			catch(e)

			{

				requestContentSize(this.getPopupIFrame().contentWindow);

			}

		}

		else

			requestContentSize(this.getPopupIFrame().contentWindow);

	}



	this.resizeMoveAndShowPopup = function()

	{

		var bNeedHScroll = false;

		var bNeedVScroll = false;



		if(this.height > this.gHeight)

		{

			this.setHeight(this.gHeight);

			//need vertical scroll bars

			bNeedVScroll = true;

			this.setWidth(this.width+this.scrollbarwidth);

		}		

		if(this.width > this.gWidth)

		{

			this.setWidth(this.gWidth);

			//need horizontal scroll bars

			bNeedHScroll = true;

			this.setHeight(this.height+this.scrollbarheight);

		}



		var nClickX = this.clickX;

		var nClickY = this.clickY;

		var nTop = 0;

		var nLeft = 0;

		var shadowpos = 5; //shadow pos relative to popup frame

	

		var scrollTop = getScrollTop();

		var scrollLeft = getScrollLeft();



		if (nClickY + this.height + shadowpos < this.clientHeight + scrollTop) {

			nTop = nClickY;

		} else {

			nTop = nClickY - this.height - shadowpos;

			if(nTop < scrollTop)

			{

				nTop = (scrollTop + this.clientHeight) - this.height - shadowpos;

				if(nTop < scrollTop)

				{

					nTop = scrollTop;

					this.height = this.clientHeight - shadowpos;

					//need vertical scroll bars

					if(bNeedVScroll == false)

					{

						bNeedVScroll = true;

						this.setWidth(this.width+this.scrollbarwidth);

					}

				}

			}

		}

		if (nClickX + this.width + shadowpos < this.clientWidth + scrollLeft) {

			nLeft = nClickX;

		} else {

			nLeft = nClickX - this.width - shadowpos;

			if(nLeft < scrollLeft)

			{

				nLeft = (scrollLeft + this.clientWidth) - this.width - shadowpos;

				if(nLeft < scrollLeft)

				{

					nLeft = scrollLeft;

					this.width = this.clientWidth - shadowpos;

					//need horizontal scroll bars

					if(bNeedHScroll == false)

					{

						bNeedHScroll = true;

						this.setHeight(this.height+this.scrollbarheight);

					}

				}

			}

		}





		//set height and width

		this.resizePopup(this.width, this.height);



		//set position

		this.getPopupContainer().style.left = nLeft + "px";

		this.getPopupContainer().style.top = nTop + "px";



		// Set the location of the background blocks

		this.getPopupShadow().style.left = shadowpos + "px";

		this.getPopupShadow().style.top = shadowpos + "px";



		if(this.strBookmark != '')

		{

			//alert(this.strBookmark);

			this.getPopupIFrame().contentWindow.location.href = this.strPopupURL + this.strBookmark;

		}



		try{

			BSSCPopup_ChangeTargettoParent(this.getPopupIFrame().contentWindow.document);

		}catch(e)

		{

			//comes here for chrome local

			requestUpdateLinks(this.getPopupIFrame().contentWindow);

		}

		this.showPopup();

		this.postWork();

	}



	this.postWork = function()

	{

		try{

			if(gbBsIsMobile == false)

			{

				if (window.addEventListener){  

					this.getPopupIFrame().contentWindow.addEventListener('click', onPopupClicked, false);  

				} else if (window.document.attachEvent){  

					this.getPopupIFrame().contentWindow.document.attachEvent('onclick', onPopupClicked);

				}

			}

		}catch(e)

		{

			//alert popup does not close on clicking on it, valid for chrome local

		}



		if(window.addEventListener)

		{

			window.addEventListener("mousedown", onPopupParentClicked, false);

			window.document.addEventListener("touchstart", onPopupParentClicked, false);

		}

		else if(window.document.attachEvent)

			window.document.attachEvent('onmousedown', onPopupParentClicked);



	}



	this.OnLoadRHPopup = function()

	{

		rhPopupEx.hidePopup();



		if(gbBsIE4 && rhPopupEx.getPopupIFrame().contentWindow.document.location.href.indexOf("about:blank") != -1)

		{

			rhPopupEx.getPopupIFrame().contentWindow.document.location.href = rhPopupEx.strPopupURL;

			return;

		}

		

		this.getClientWndSize();

		if (rhPopupEx.width == 0 || rhPopupEx.height == 0) 

		{

			rhPopupEx.computePopupWndSize();

		}

		else

			rhPopupEx.resizeMoveAndShowPopup();



	}

}



function supports_video() {

  return !!document.createElement('video').canPlayType;

}



function supports_mp4_video()

{

	if(!supports_video()) 

		return false;

	var v = document.createElement("video");

  	var playType = v.canPlayType('video/mp4');

	//alert(playType);

	if(playType == "" || playType == "no")

		return false;

	else

		return true;

}



function getUrlParam(paramName, url)

{

  if(url == null || url == 'undefined')

        url = document.location.href;

  paramName = paramName.replace(/[\[]/,"\\\[").replace(/[\]]/,"\\\]");

  var regexS = "[\\?&]"+paramName+"=([^&#]*)";

  var regex = new RegExp(regexS);

  var results = regex.exec(url);

  if( results == null )

    return "";

  else

    return results[1];

}



function send_flv_command(strMultimediaFlvName, strMultimediaFlvCommand)

{

	try

	{

		if(strMultimediaFlvName != null && typeof(strMultimediaFlvName) != undefined)

		{

			var flashMediaPlayer = document.getElementById(strMultimediaFlvName);

			if(flashMediaPlayer != null && typeof(flashMediaPlayer) != undefined)

			{

				if(strMultimediaFlvCommand != null && typeof(strMultimediaFlvCommand) != undefined)

				{

					flashMediaPlayer.TakeMultimediaAction(strMultimediaFlvCommand.replace("%20", " "));

				}

			}

		}

	}

	catch(err)

	{

		//alert(strMultimediaFlvName + ' ' + strMultimediaFlvCommand);

	}

}



function onLoad_FLV_Player(strMultimediaFlvName)

{

	if(strMultimediaFlvName != null && typeof(strMultimediaFlvName) != undefined)

	{

		var strMultimediaFlvNameHRef = getUrlParam('flv_name');

		if(strMultimediaFlvNameHRef != null && typeof(strMultimediaFlvNameHRef) != undefined)

		{

			if(strMultimediaFlvNameHRef == strMultimediaFlvName)

			{

				var strMultimediaFlvCommand = getUrlParam('flv_cmd');

				send_flv_command(strMultimediaFlvName, strMultimediaFlvCommand);

			}

		}

	}

}



function requestCpHTML5Size(targetWnd, iframeid)

{

	if(targetWnd && targetWnd.postMessage)

		targetWnd.postMessage("getCpHTML5Size" + gMsgSeparator + ",id:"+ iframeid, "*");

}



function replyCpHTML5Size(targetWnd, msgData)

{

	var obj  = parseMsgData(msgData);

	

	var pc = getProjectContainer();



	

	

	targetWnd.postMessage("setCpHTML5Size" + gMsgSeparator + ",id:" + obj.id + ",height:" + parseFloat(pc.style.height) + ",width:" + parseFloat(pc.style.width), "*");

}



function onGetReplyCpHTML5Size(targetWnd, msgData)

{

	var obj  = parseMsgData(msgData);

	var iframeelem = getElement(obj.id);

	if(typeof iframeelem != 'undefined')

	{

		iframeelem.style.width = obj.width + "px" ;

		iframeelem.style.height = obj.height + "px" ;

	}

}



function onHTML5OutputLoad(id)

{

	var iframeelem = getElement(id);

	if(typeof iframeelem != 'undefined')

	{

		var wnd = iframeelem.contentWindow;

		if(gbBsIE4)

		{

			try{

				var h = getDocHeight(wnd.document);

				var w = getDocWidth(wnd.document);



				iframeelem.style.width = w + "px" ;

				iframeelem.style.height = h + "px" ;

			}

			catch(e) {}

		}

		else

		{

			requestCpHTML5Size(wnd, id);

		}

	}

}



//End to collaborate with other event handler settings



/// Section End  - CCSSP DHTM 2 (JavaScript 1.2)



//// Segment End -- (JavaScript 1.2)





OEBPS/HDF5_Users_Guide/Groups/groups_fig28_a.JPG
groupt group2





OEBPS/HDF5_Users_Guide/Groups/groups_fig27_bb.JPG
groupt group2





OEBPS/HDF5_Users_Guide/Groups/groups_fig27_a.JPG
groupt group2





OEBPS/HDF5_Users_Guide/Groups/Group_fig2_800001.jpg





OEBPS/HDF5_Users_Guide/Groups/groups_fig27_aa.JPG
groupt group2





OEBPS/HDF5_Users_Guide/Groups/groups_fig27_b.JPG
groupt group2





OEBPS/HDF5_Users_Guide/Groups/groups_fig4.JPG
Group 5 s

size: sizet [ Attribute

Link

name: string

Object





OEBPS/HDF5_Users_Guide/Groups/Group_fig3.jpg





OEBPS/HDF5_Users_Guide/Groups/Groups_fig6.JPG
Gromp.

lLcerace 1)
lvec_cbiect_info ()
lgec 250k s2g0()





OEBPS/HDF5_Users_Guide/Groups/groups_fig5.JPG
[ T 1

o] [ ] [ meene]






