RFC: Collective Metadata Writes

HDF5 uses a metadata cache internally for fast metadata access. Parallel HDF5
uses the metadata cache in the same way but with a requirement of having the
same stream of dirty metadata from all MPI ranks. This means that all operations
that modify metadata in the file are required to be collective. The HDF5 metadata
cache is a very important component of the library that enables fast access to file
metadata instead of issuing multiple small accesses to the file system. Parallel
HDF5 uses the same cache on every MPI process with some restrictions. The most
important one being that all modifications to the file metadata have to be done
collectively on all ranks. For more information about the metadata cache and
requirements, consult the metadata cache user guide. Writing metadata in HDF5
results from operations that modify the file structure, creating new objects,
extending datasets, etc... Reading metadata results from operations such as
opening the file and objects in that file, iterating through the file hierarchy,
reading attributes, etc...

A flush of the metadata cache can be triggered either by the user through a call to
H5Fflush() or H5Fclose(), or by the library when the amount of dirty metadata
crosses a certain threshold. Either way, this operation is collective which means
all processes will be participating. Originally, the library wrote out dirty metadata
in one of two ways:

1. Process 0 write only strategy, where 1 process (rank 0) wrote the dirty
metadata entries 1 entry at a time to the file and bcast the list to the other
ranks to clean the flushed entries.

2. Distributed write strategy, where rank 0 sorts and assigns each process to
equally write a certain number of entries, independently, 1 entry at a time.

Both algorithms were expensive on parallel file system. A new optimization will be
introduced to modify the distributed algorithm with having all processes
construct an MPI derived datatype for their assigned dirty entries, then all
processes will issue 1 collective write call to write out the metadata to disk.



A new API routine is added to set a file access property that enables collective
writing of metadata:

herr t H5Pset coll metadata write(hid t plist id,
hbool t is collective);

where is collective indicates whether collective metadata writes will be
enabled (true) or disabled (false). The default setting retains the old behavior
which is false.

Another routines is added to retrieve the collective metadata write setting:

H5 DLL herr t H5Pget coll metadata write(hid t
plist id, hbool t *is collective);

Preliminary results benchmarking the CGNS close operation that writes out some
HDF5 metadata it creates in the file show a huge speedup with the new
optimization on LUSTRE and GPFS:

CGNS Close
Hopper - Lustre
160
140
120
100

80

Seconds

Patched

60
=0=0rig

40

20

128 512 1024 2048 4096 8192 12284 16384
Number of Ranks



Seconds

CGNS Close
Cetus - GPFS

45

40

/

35

/

30

25

A

20

P

15

/

10

0 -

128

512

1024

4

2048 4096 8192
Number of Ranks

12284

16384

====Patched
=0=0rig




