Parsing Hierarchical Data Format (HDF) Files
Karl Nyberg

Grebyn Corporation
P. O. Box 47
Sterling, VA 20167-0047
703-406-4161

karl@nyberg.net

ABSTRACT

This paper presents a description of the creati@nlibrary to parse Hierarchical Data Format (HB#gs in Ada. It describes a “work in
progress” with discussion of current performanieitations and future plans.

Categoriesand Subject Descriptors
D.2.2 [Design Tools and Techniques]: Software Liles E.2 [Data Storage Representations]: Objepré&&entation; 1.2.10 [Vision and
Scene Understanding]: Representations, data stesctand transforms.

General Terms
Algorithms, Performance, Experimentation, Data Fatsm

Keywords
Ada, HDF.

1. INTRODUCTION

Large quantities of scientific data are publishadreyear by NASA. These data are often accompdnjiedetadata files that describe the
contents of individual files of the data. One ep&rof this data is the ASTER (Advanced Spacebdirermal Emission and Reflection
Radiometer) [1]. Each file of data (consistingsafellite imagery) in HDF (Hierarchical Data Forin@] is accompanied by a metadata
file in XML (Extensible Markup Language) [3], encatl according to a published DTD (Document Type Bpson) that indicates the
components and types of data in the metadata file.

Each ASTER data file consists of an image of thelli® as it passes over the earth [4]. Inforoatn the location of the data collected
as the satellite passes is contained in the metditlat Over time, multiple images of the samealian on earth are obtained. For many
purposes of analysis (erosion, building pattermedoréstation, glacier movement, etc.), these imafaeke same location are compared
over time.

In order to determine which images contain datenfommmon locations, the metadata describing theageés can be parsed and a list of
files according to location can be ascertainedseparate article describes the ASTER project aadrtbtadata parsing effort [8]. This
article describes the creation of a library to pake individual HDF files.

2. HIERARCHICAL DATA FORMAT

2.1 History
The Hierarchical Data Format (HDF) was originalvdloped at the Graphics Foundations Task Forc@ k&t theNational Center for
Supercomputing Applications (NCSAJ the University of lllinois at Urbana-Champaigdits purpose was to:

create an architecture-independent software libaad file format to address the need to move séieatata among the many
different computing platforms in use at NCSA attttime. Additional goals for the format and librancluded the ability to
store and access large objects efficiently, thétalbd store many objects of different types tdgatin one container, the ability
to grow the format to accommodate new types ofatbjand object metadata, and the ability to actesstored data with both
C and Fortran programs [6]

HDF has been maintained and supported since 20@ebiyiDF Group, which was separated from the Usitgepf Illinois as a non-profit
501 (3) (c) company.

2.2 Description
The HDF format allows the definition of data cotieas in a hierarchical manner with an embeddeeéctiiry structure and data
descriptions. The following sections describe ¢hdata structures within HDF that were encountérelis project and for which support

in reading from the corresponding files was devetbp Additional documentation is available at th®BFHGroup’s web site —
http://www.hdfgroup.org

An HDF file essentially (after a four byte file ifification header) consists of two types of datactures — data descriptors and data
elements. Objects of these two types are storddnaan HDF file with data descriptors being pad@gnto blocks (of up to 200 in length
for the data sets under consideration) and dataesits being stored individually throughout the.filln general, due to the manner in
which data is written into an HDF file, there vk blocks of data descriptors followed by data aisjefollowed by data descriptors, etc.

2.2.1 Data Descriptors

Data descriptor objects contain descriptive infdiaraon the data they describe (a tag to indichtetype and a reference number to
disambiguate objects of the same type), an offgetthe file to indicate the location of the objend an indicator of the length of the data.
A block of data descriptors indicates the quantityalid data descriptors contained within the kland the offset within the file to the
next data descriptor block as needed.

t ype Header_Block is record
Num_Dds : Interfaces.Integer_16;
Block_Size : Interfaces.Integer_16;
Next_Block : Interfaces.Unsigned_32;

end record;

t ype Data_Descriptor is record
Tag : Interfaces.Integer_16;
Reference_Number : Interfaces.Integer_16;
Offset : Interfaces.Integer_32;

Length : Interfaces.Integer_32;
end record;

t ype Data_Descriptor_Array is array (Interfaces.Integer_16 range <>) of Data_Descriptor;

The reference numbers are merely unique identifisesl to group the objects. The tags are defiméliel HDF specification and are the
real workhorse component of the HDF format. Adufiil description of tags follows below. Readindgha data descriptors was as
straightforward as walking the array of descripiarmemory and following any “pointers” to successblocks.

2.2.2 Data Elements
Data element objects can either be collectionshjéats (called a data set), sometimes also puthegén a group to identify all the
objects in a set. View Groups (Vgroups) allow ¢ihganization of objects to associate these objedtee current application.

t ype Vgroup_Record is record
Nelt : Interfaces.Integer_16;
Tags : Integer_16_Array_Ptr;
Refs : Integer_16_Array_Ptr;
Namelen : Interfaces.Integer_16;
Name : String_Ptr;

Classlen : Interfaces.Integer_16;
Class : String_Ptr;

Extag : Interfaces.Integer_16;
Exref : Interfaces.Integer_16;
Version : Interfaces.Integer_16;
end record,;

In addition to Vgroups, also of interest were otgahbat specified Scientific Data Groups (SDG) eotd, as this was the type of data of
interest in this project. In a SDG, there wereurez objects with three tags (HDF 5.5.3 SDG Strrex):

DFTAG_SDG Scientific Data Group

DFTAG_SDD Dimension record for array-
stored data. Includes the rank
(number of dimensions), the
size of each dimension, and the
tag / refs representing the
number type of the array data
and of each dimension.

DFTAG_SD Scientific data.

t ype Scientific_Data_Dimension_Record is

record
Rank : Interfaces.Integer_16;
Dimensions : Integer_32_Array_Ptr;
Data_Nt_Ref : Interfaces.Integer_16;
Scale_Nt_Refs : Integer_16_Array_Ptr;
end record;

Once the type and dimensions of the scientific desiee determined, it was simple enough to insteaarecord with the particular
type_code (an enumeration type covering the liti types — unsigned and signed integers of vasmes, floating point values,
strings, etc.) upon encountering an object’s spdibn.

t ype Scientific_Data_Record (Of_Type : Type_Info_Codes) is record
case Of Type is
when DFNT_NONE => nul | ;

when DFNT_UINT8 => Data_Unsigned_8 : Unsigned_8_Array _Pptr;
when DFNT_UINT16 => Data_Unsigned_16 : Unsigned_16_Arr ay_Ptr;
when DFNT_UINT32 => Data_Unsigned_32 : Unsigned_32_Arr ay_Ptr;

when DFNT_VERSION => Data_Version : String_Ptr;

3. LIBRARY STRUCTURE
The HDF library is neatly broken up into four segtarpackages: data types, reading routines, pamsiriines, and display routines.

3.1 DataTypes

The HDF data types include tfigipe_Info_Codes (identifying underlying physical data types on twmputere.g.various integer
and float precisions, character and string), cpoeding array types, defining HDF tag types, ins&ion of low level conversion
procedures and HDF data type declarations. Ofquéati interest are the tag types and some of tteetgdge declearations.

3.1.1 Tag Types
Tag types, much like TIFF tags [9], indicate thpetyof data that the tag describes. The tagsr#dl the following categories (HDF
Specification 9.3):
« Ultility tags
e Annotation tags
» Compression tags
* Raster Image tags
» Composite image tags
» Vector image tags
e Scientific data set tags
* Vsettags
* Obsolete tags
« Extended tags

Currently, the following tags are recognized anppsurted:
» DFTAG_VERSION - Version Description
e DFTAG_NT — Numeric Type
« DFTAG_SDD - Scientific Data Dimension
« DFTAG_SD - Scientific Data
e DFTAG_NDG — Numeric Data Group
« DFTAG_VH - Vdata Description
+ DFTAG_VS - Vdata
e DFTAG_VG - Vdata Group

3.1.2 Data Type Declarations
The data type declarations are simply straightfodvta implement from the specification. Some add#l examples:

t ype Scientific_Data_Dimension_Record is record
Rank : Interfaces.Integer_16;

Dimensions : Integer_32_Array_Ptr;

Data_Nt_Ref : Interfaces.Integer_16;

Scale_Nt_Refs : Integer_16_Array_Ptr;

end record;

t ype Numeric_Data_Group_Record is record
Tags : Hdf_Types.Integer_16_Array_Ptr;
Refs : HAf_Types.Integer_16_Array_Ptr;

end record;

3.2 Reading Routines

The reading routines include both lower level d#igects (such as the various integer and floatsypad the various HDF data elements.
If additional underlying machine architectures werée supported, this package might reasonab$plieto provide additional packaging
mechanism opportunities for different such architezs rather than the simple alternative readifgse chosen (described below) by
separating the lower level reading routines outhatemains are mid-level routines between theimmargackage and the low-level
reading routines.

3.3 Parsing Routines

The parsing routines parse data descriptor itefitee majority of routines in this package curremntain stubs, since only those data
descriptors corresponding to tags encounterederttinrent application were implemented. For exampl read the contents of a Version
object:

pr ocedur e Read_Version (File_ldentifier : Hdf lo.File_Type;

Data_Descriptor : Hdf_Types
Version :
begi n
Hdf_lo.Set_Index (File_Identifier, Hdf_lo.Count
Version := new Hdf_Types.Version_Record;
Read_Unsigned_32 (File_ldentifier, Version.Major
Read_Unsigned_32 (File_ldentifier, Version.Minor
Read_Unsigned_32 (File_ldentifier, Version.Relea
Read_String (File_ldentifier,

Interfaces.Integer_16 (Data_Descrip

.Data_Descriptor;

i n out Hdf Types.Version_Record_Ptr) is

(Data_Descriptor.Offset) + 1);
_V)

_V);
se);

tor.Length),

Version.The_String);
end Read_Versi on;

3.4 Display Routines

The display routines are provided primarily forrtdgag and debugging purposes. The HDF Group timalside programs for displaying

the Data Descriptors contained within a file aslwasl for “dumping” various objects of particulartaa@lements. A portion of the test

software developed to exercise the functionalittheflibrary performs similarly.

Procedur e Display_Version (Version : Hdf_Types.Version_Record Pty is

begi n
Put ("Major_V: " & Interfaces.Unsigned_32'
Put (", Minor_V: " & Interfaces.Unsigned_32"' I mage (Version.Minor_V));
Put (", Release: " & Interfaces.Unsigned_32' | mage (Version.Release));
Put_Line (", Name: " & Version.The_String. al l');

end Display_Version;

I mage (Version.Major_V));

4. PERFORMANCE

To date, only a single application (other than peegrams) is being developed against the librdoygenerate digital elevation model data
from the stereo-correlation of multiple images iIBTER data sets. Performance of reading in theégomoof the data sets necessary to
determine the regions of interest appears adedresding in the necessary data descriptions, fqydaiocating space for and reading in
two arrays containing 20 million plus IEEE 64 Hibeting point values each from a 118 megabyte Hid-thkes approximately 20
seconds.)

Of the approximately three thousand lines of coeeetbped about a quarter are type declarationsiagter parsing routines, a quarter
display routines (for testing and debugging) arel bmaining quarter for actually reading the dattha lowest level. An additional
thousand lines of test tool software was also cetegl

5. LIMITATIONS
5.1 Subset Implementation

The library described in this article was develofadonly a specific effort and has some significhmitations. First, it was developed
only for reading HDF files, not for creating therWhile this may be a significant matter for moregel purpose use, it was acceptable
here. Second, only procedures necessary to padsacaess the data types used in the NASA ASTERwate developed. While this is
a significant amount of functionality, it did nober all possible input data. No attempt was ntad@imic the structure or style of the
available implementations.

5.2 Lifecycle Considerations

Only a limited amount of effort was put into makitte library memory-friendly and none into makirigtasking-safe and there are
certainly still memory leaks, which could provealain other large applications. The library actyathplements an obsolete (from the
point of view of “support”) version 4 of HDF. Congration was given to implementing version 5 andgisupplied tools to convert
between the two versions of the format, but giveat the individual files under consideration welready in the hundreds of megabytes
(and there were tens of thousands of them!), inseleprudent to create the library in the nativenatrof the files rather than convert files
and have to handle either additional processirigtermediate storage.

The library was initially developed on Linux / x8&d ported to Solaris / Sparc to utilize a largirass space and available memory (the
available Sparc equipment utilized a 64 bit Solanierating system and had 16GB of memory [Nybeng]anticipation of future
modifications to support a multicore architectufee porting required a modification of only fivendevel reading procedures to account
for a mechanism to specify the underlying architextaind byte-swapping differences between the tahitactures.

pr ocedur e Read_Unsigned_32 (File_Identifier : Hdf_lo.File_Ty pe;
Result : out Interfaces.Unsigned_32) is
X : Hdf_Types.Unsigned_8_Array 4;
begi n

i f Machine = X86 t hen
Hdf_lo.Read (File_Identifier, X (4));
Hdf_lo.Read (File_Identifier, X (3));
Hdf_lo.Read (File_Identifier, X (2));
Hdf_lo.Read (File_Identifier, X (1));
el si f Machine = Sparc t hen
Hdf_lo.Read (File_Identifier, X (1));
Hdf_lo.Read (File_Identifier, X (2));
Hdf_lo.Read (File_Identifier, X (3));
Hdf_lo.Read (File_Identifier, X (4));
el se
Put_Line ("ERR:hdf.read_unsigned_32");
r ai se Program_Error;
end if;

end Read_Unsigned_32;

5.3 Usability Considerations

The naming convention used in the HDF specificaticas used for name selection through the implertienta Some itemse(g,
constants, enumerations, etc.) have direct correkpwe to the same items in the C implementatiOther items (particularly record
types, procedure names, etc.) have names morepirigewith the Ada style.

6. PRIOR AND RELATED WORK

The HDF Group fittp://www.hdfgroup.oryyprovides documentation and tools for operatindnwWiDF files in C, Fortran and Java. These
tools allow for creation, updating and reading Hfidés. At one time, an Ada 95 binding to HDF5 Hzebn developed [5], but it has been
lost to antiquity*

The documentation is excellent and provided a rtloae adequate basis for the development of tharlitfior reading the collection of
files acquired under this effort. It is anticipatihat extending the library to operate with additil data elements as they are acquired will
be straightforward.

7. ACKNOWLEDGMENTS

Thanks to Richard Biby for the suggestion to do estrimg interesting with the ASTER data. Thanks &sDavid Emery for encouraging
the writeup of this approach and to both he ana8Barkstrom for reviewing rough drafts of it.

Y In early January 2010, it appeared that a coghisfbinding had been found and preparations weiegbmade to have it released from
the appropriate government agencies.

(1]
(2]
(3]
[4]
[5]

[6]
[7]
(8]

REFERENCES

http://asterweb.jpl.nasa.gov

http://www.hdfgroup.org/products/hdf4/
http://www.w3.0org/TR/REC-xml/
http://www.science.aster.ersdac.or.jp/en/documdiS{STER Ref V1.pdf

Barkstrom, Bruce R., “Ada 95 Bindings for the NCH#erarchical Data Format In SIGAda Ada Letters
Volume XXI, Issue 4 (December 2001) SIGAda 200100®Bloomington, MN, USA. 27-30.

http://www.hdfgroup.org/about/history.html

Nyberg, Karl A. “A Constructive Approach to Intedgeactorization”http://www.grebyn.com/t1000
Nyberg, Karl A. “Automatically Generating DTD-SpéciXML Parsers”;SIGAdaAda Lettersto appear.

